
General topics relating to Linux and Unix operating systems

Basic Commands Overview
Filesystem Hierarchy
Linux File Systems

Ext4: the reliable all-rounder
Btrfs: modern and feature-packed
XFS: the workhorse
ZFS: the file system to end all file systems

Linux (General)

Command Description Package

base64 base64 encode/decode data and print
to standard output

coreutils

basename strip directory and suffix from
filenames

coreutils

cat concatenate — combine the output of
files and print to standard output

coreutils

cd Change Directory — navigate
directories on the filesystem

built-in

chmod change file mode bits (permissions)
for files and directories

coreutils

chown change file owner and group coreutils

clear clear the terminal content clear

cp copy files coreutils

csplit split a file into sections determined by
context lines

coreutils

dd convert and copy a file coreutils

df Disk Free — report overall file system
space usage

coreutils

diff show differences between two files
line by line

diffutils

dirname print the directory path if the passed
file

coreutils

du Disk Usage — show file system usage
for a given directory

coreutils

echo display a line of text built-in

find search for files in a given directory findutils

grep search for text grep

head display the first X lines of a file
(default 10)

coreutils

history print the history of issued commands built-in

jobs display currently running jobs built-in

kill terminate a process util-linux

Basic Commands Overview

Command Description Package

ls list directory contents coreutils

man Manual — display the documentation
of a given command

man

mkdir create a directory coreutils

mv move (and rename) files coreutils

ping check if a server is reachable iputils

printenv print information about currently set
environment variables

coreutils

printf format and print data coreutils

pwd Print Working Directory — returns the
current working directory

built-in

rm remove files and directories (caution:
no undo!)

coreutils

scp OpenSSH secure file copy openssh

sha256sum compute and check SHA256 message
digest (variants for SHA1, SHA224,
SHA384 and SHA512 exist)

coreutils

sort sort lines of text files coreutils

sudo Super User Do — execute commands
as root

sudo

tail display the last X lines of a file
(default 10)

coreutils

tar archiving utility, compression optional tar

top display Linux processes procps-ng

touch create an empty file coreutils

uname Unix Name — print system
information

coreutils

unzip list, test and extract compressed files
in a ZIP archive

unzip

useradd create a new user or update default
new user information

shadow

userdel delete a user account and related files shadow

wget download files from the internet wget

zip package and compress (archive) files zip

The Filesystem Hierarchy Standard (FHS) is a set of guidelines that define the directory structure of
a Linux operating system. This standard specifies the names and locations of directories, files, and
other file system objects that are essential for the proper functioning of the Linux operating
system.

Directory Description

/bin binary files of basic commands

/boot static files of the bootloader

/dev device files

/etc host-specific system configuration

/lib basic dynamic libraries and kernel modules

/media mount point for removable media

/mnt for temporarily mounted file system

/opt additional application programs

/run relevant data for running processes

/sbin essential binary files of the system

/srv data for services

/tmp temporary files

/usr secondary hierarchy

/var variable data

The root directory is the highest level of the file system hierarchy. It contains all other directories
and files in the system. All directories and files in the system are located either directly or indirectly
under the root directory.

Filesystem Hierarchy

Root Directory (/)

/bin Directory

The /bin directory contains essential binary files that are required for the system to function
properly. These files are used by all users of the system, and they include basic system commands
such as ls , cp , and mv . The /bin directory must not contain any subdirectories. Each installed
package places its main executables here.

The /boot directory contains the files needed by the bootloader for the Linux kernel, including the
kernel itself, initrd (initial RAM disk), and boot loader configuration files. The bootloader is the
program that loads the operating system when the computer starts up. The files in /boot are
essential for the bootloader to function properly.

The /dev directory contains device files that represent hardware devices connected to the system.
These files allow applications and users to interact with the hardware devices such as keyboards,
mice, and disk drives using standard input/output operations.

There's different types of device files:

Type Description

Character device Communication with a character device is based on the
exchange of characters, such as individual bytes

Block device Communication with a block device is based on the
exchange of entire blocks of data

Pseudo device Devices that are not corresponding to any real hardware
actually present on the system

Each device file in the /dev directory represents a specific hardware device. These files are created
dynamically and disappear when the device is disconnected.

Some examples of device files:

File Description

NOTE: On most modern Linux distributions, /bin is actually a symbolic link pointing to
/usr/bin .

/boot Directory

/dev Directory

/dev/dm-X Logical volumes created using LVM (device manager).
X = index of device manager volume

/dev/hdX IDE hard drives or other storage devices. Common in older
systems.

X = lower-case letter indicating order of
discovery

/dev/hdXY Partitions on IDE storage device.
X = disk
Y = partition on that disk

/dev/jsX Device file for a joystick/gamepad.
X = index of a joystick connected to the system

/dev/mdX Software RAID devices (meta disk).
X = meta disk group index

/dev/mmcblkX MMC/SD cards and eMMC storage devices.
X = index of an MMC storage device

/dev/nvmeXnY NVMe solid-state drives.
X = controller index
Y = device index on that controller

/dev/nvmeXnYpZ Partitions on NVMe storage device.
X = controller index
Y = device index on that controller
Z = partition on that device

/dev/null Pseudo-device that always outputs EOF (end of file).
Output redirected to it is immediately discarded.

/dev/random Pseudo-device that generates random data (blocking).

/dev/sdX SCSI or SATA hard drives and other storage devices.
Common in modern systems.

X = lower-case letter indicating order of
discovery.

/dev/sdXY Partitions on SCSI or SATA storage device.
X = disk
Y = partition on that disk

/dev/srX CD-ROM or DVD-ROM drives.
X = index of an optical drive connected to the
system

/dev/ttyX Device file for the terminal.
X = index of a terminal

/dev/urandom Pseudo-device that generates random data (non-blocking)

/dev/vdX Virtual storage device.
X = lower-case letter indicating order of
discovery

/dev/vdXY Partitions on a virtual storage device.
X = disk
Y = partition on that disk

/dev/videoX Device file for a webcam.
X = index of a webcam connected to the
system

The /etc (editable text configuration) directory contains system configuration files. These files are
used to configure the system and its applications. Examples of files in this directory include passwd
and group files, which contain user and group information, and fstab file, which contains
information about file systems that are mounted at boot time. The /etc directory is one of the most
important directories in the system, as it contains configuration files that enable system
administrators to customize the system to their needs.

Some examples of what might be of particular interest:

Directory/File Description

/etc/opt/ Configuration files for software installed to /opt .

/etc/security/ Configuration files for PAM (Pluggable Authentication M
odules).

/etc/skel/ Configuration files that are copied to a newly created
user's /home directory.

/etc/X11/ Configuration files for the X Window System which
provides a graphical user interface for Linux.

/etc Directory

Directory/File Description

/etc/crontab Configuration file uniquely formatted to automate system
tasks on a set schedule.

/etc/fstab Contains information about file systems and partitions
automatically mounted at system startup.

/etc/group Contains information about user groups, including group
names and group IDs.

/etc/hosts Configuration file that maps hostnames to IP addresses.

/etc/logrotate.conf Configuration file for the logrotate utility, managing
system log files.

/etc/passwd Stores user account information such as usernames, user
IDs, home directories, and login shells.

/etc/profile Contains system-wide environment variables and other
startup scripts.

/etc/resolv.conf DNS resolver file which specifies how the system leverages
DNS to resolve hostnames.

/etc/shadow Contains encrypted user passwords and other password-
related information.

/etc/ssh/sshd_config Configuration file for the SSH server, which allows secure
remote access to the system.

/etc/sudoers Contains rules for allowing or denying sudo privileges to
users and groups.

The /home directory contains the personal files for all users in the system. Each user has a
subdirectory of their name in the /home directory that contains their documents, pictures, music,
and individual application settings. Each user's home directory is private, and other users cannot
access the files in that directory without the user's permission.

Some examples for directories/files in a user's home directory could include:

Directory/File Description

/home Directory

NOTE: A user's personal home directory can be shortened to ~ .

NOTE: Directories and files starting with a period . are considered hidden.

~/.config/ Contains configuration files for applications that are
specific to a user.

~/.gnupg/ Contains user-specific configuration files for GnuPG (GNU
Privacy Guard).

~/.local/ Contains user-specific data files for applications that are
installed system-wide.

~/.mozilla/ Contains user-specific configurations and settings for
Firefox.

~/.ssh/ Contains user-specific configuration files and private/public
keys for SSH (Secure Shell) connections.

~/.bashrc , ~/.zshrc Contains user-specific configurations for the user's
terminal emulator.

These hidden directories in a user's home directory are important for ensuring that user-specific
data and configuration files are stored in a separate location from system-wide files. This
separation enables users to customize their system to their needs without affecting other users or
the core system.

The /lib directory (or /lib64 for 64-bit systems) is a crucial component of the operating system. It
contains shared libraries that are required by programs in /bin and /sbin directories, as well as
other applications. These libraries provide functionality for many basic system operations, such as
networking, file handling, and encryption. Without these libraries, the system would not be able to
perform many of its fundamental functions. It is important to ensure that the files in /lib are always
up-to-date and compatible with the system's other components to guarantee smooth operation.

In addition to the shared libraries, the /lib directory contains other important files, such as kernel
modules (/lib/modules/) and firmware files (/lib/firmware/). Kernel modules are small programs that
can be loaded and unloaded dynamically into the kernel without having to reboot the system.
These modules provide additional functionality to the system, such as support for new hardware or
file systems. Firmware files, on the other hand, contain low-level software that is used to control
hardware devices, such as network adapters (especially WiFi) or graphics cards.

Directories/Files Description

/lib/firmware/ Contains firmware files needed by devices to function
properly, e.g. WiFi adapters and graphics cards.

/lib Directory
NOTE: On most modern Linux distributions, /lib is actually a symbolic link pointing to
/usr/lib .

Directories/Files Description

/lib/security/ Contains authentication modules for PAM (Pluggable A
uthentication Modules).

/lib/systemd/ Contains files for the systemd system and service
manager. Also contains systemd unit files.

The /media directory contains mount points for removable media devices such as USB drives and
CD/DVDs. When a removable device is mounted, its contents appear in a subdirectory under the
/media directory. The /media directory is used to manage removable media devices, and it allows
users to access the files on those devices as if they were part of the file system.

The /mnt directory is used to temporarily mount file systems. This directory is typically used by
system administrators when they need to mount a file system for a short period of time. The /mnt
directory is used to access file systems that are not part of the main file system, such as network
file systems or file systems on removable media devices.

The /opt directory is used for optional software packages that are not part of the main operating
system. Examples of software that might be installed in the /opt directory include proprietary
software packages or third-party software that is not included with the distribution's main software
repositories.

Examples of software you might see in this directory:

Directory/File Description

/opt/1Password/ Password manager from Agile Bits

/opt/discord/ Discord VoiP client

/opt/google/ Google Chrome web browser

/opt/quake3/ Quare 3 Arena from id Software

/opt/spotify/ Spotify music streaming client

/media Directory

/mnt Directory

/opt Directory

Directory/File Description

/opt/visual-studio-code/ Visual Studio Code editor from Microsoft

The /proc directory is a virtual directory that contains information about running processes and
system resources. This directory provides a way for processes to communicate with the kernel and
allows system administrators to monitor system performance. The files in the /proc directory are
not actual files, but rather a virtual representation of system resources. The /proc directory is used
by system administrators to monitor system performance and diagnose system problems.

Directory/File Description

/proc/cpuinfo Contains information about the CPU, e.g. model name,
number of cores, and clock speed.

/proc/meminfo Contains memory usage information including swap
storage use.

/proc/modules Contains a list of all the modules being used by the kernel.

/proc/swaps Contains information only about swap storage.

/proc/sys Contains files that are used to manage kernel parameters.

/proc/version Contains Linux version information.

The /root directory is the home directory for the root user. This directory contains the root user's
personal files and settings. The root user is the most powerful user on the system, and has access
to all files and directories on the system.

The /run directory is a unique and important directory in the Linux operating system that contains
runtime data that is used by the system and applications. This data is volatile as it is mounted as a
tmpfs filesystem that is only stored in system memory and its contents are lost when the system is
rebooted.

The data stored in the /run directory is updated frequently and automatically by the system and
applications. The directory is also used as a mount point for systemd, a system and service

/proc Directory

/root Directory

/run Directory

manager that is used in most modern Linux distributions. Systemd is responsible for managing
system services, and it also uses the /run directory to store runtime data for these services.

The /run directory is also used for user mounted storage mediums like CDs, DVDs, USB drives and
network shares.

The /sbin directory contains essential system binaries that are used for system administration
tasks, such as configuring the network or managing user accounts. These files are typically used by
system administrators and are not intended for everyday use.

The /srv directory is used to store data that is served by the system, and it is typically used by web
servers, FTP servers, and other server applications.

Other directories that are used for different purposes include:

Directory/File Description

/srv/ftp/ Contains files that an FTP server uses to store all of the
files that can be accessed by the FTP server.

/srv/www/ , /srv/http/ Contains files that are served by a web server (sub-
directory is distribution specific).

The /sys directory is a fundamental component of the Linux filesystem hierarchy and an essential
tool for hardware management and configuration. This directory is structured in such a way that
each hardware device is represented by a directory tree and a set of files, providing users with
detailed information about the device's properties and allowing them to adjust, among other
things, power management settings, device parameters, and monitor the device's status. The files
in the /sys directory are not actual files, but rather a virtual representation of hardware devices.
They are re-created upon every boot of the system and mounted as a virtual sysfs filesystem.

/sbin Directory
NOTE: On most modern Linux distributions, /sbin is actually a symbolic link pointing to
/usr/bin .

/srv Directory

/sys Directory

The /tmp directory is used for temporary files. This directory is typically used by applications to
store non-critical files and it is typically cleaned out on a regular basis to prevent the accumulation
of unnecessary files. It is writable to any user and is ideal for using it as a scratchpad type of
directory. The /tmp directory is mounted as a tmpfs type of filesystem, which means its contents
are stored in the system's memory for fast access. However, this also means that it is generally not
recommended putting large files there as to not exhaust the system's memory with large
amoounts of data.

The /usr (Unix System Resources) directory is used to store programs, libraries, documentation
and data that are not part of the core operating system, but that are still important for the system
to function. Examples of programs that might be installed in the /usr directory include text editors,
email clients, and games.

Some other examples of contents of the /usr directory:

Directory/File Description

/usr/bin/ Contains executable binaries of applications

/usr/bin/gcc/ Binaries for compiling all sorts of source code of different
programming languages

/usr/include/ Source code header files for including functionality of one
application into another during development

/usr/lib/ Shared system libraries, e.g. libc.so (C library), libssl.so
(SSL library)

/usr/lib/systemd/ Systemd service unit files

/usr/local/ Typically used to install applications compiled from source,
otherwise goes largely unused

/usr/share/ Architecture-independent data files, e.g. game assets,
icons, cursors, desktop themes, wallpapers, etc.

/usr/share/doc/ System documentation

/usr/share/locale/ Translations for applications

/usr/share/man/ Application manual pages

/usr/src/ Linux kernel source code files

/tmp Directory

/usr Directory

The /var directory contains variable data files. These files are typically files that change frequently,
such as log files, locally delivered mail and spooler files for printer job queues.

Some other examples of contents of the /var directory:

Directory/File Description

/var/cache/ Frequently accessed data, e.g. browser cache and
downloaded software packages

/var/lib/ Varying application data used by system libraries
(e.g. /var/lib/libvirt/images/ for libvirt virtual machine disk
images)

/var/log/ Log files of all sorts of different applications

/var/mail/ Locally delivered mail messages

/var/mysql/ MySQL database files

/var/spool/ Printer job queue

/var Directory

Linux supports a wide range of file systems, from older ones like **Ext2** to more modern, feature-
rich options like **Btrfs** and **ZFS**. Each file system offers a unique set of features, including
support for journaling (protecting file system integrity), compression, encryption, and snapshots.
The choice of a file system can affect system performance, reliability, scalability, and ease of
management. Selecting the right file system is key to ensuring your system operates efficiently
and reliably.

Linux's open-source nature allows for flexibility in choosing the right file system, whether you're
looking for performance, data integrity, fault tolerance, or ease of use. This diversity provides many
options to tailor the system's storage to specific requirements.

Linux File Systems

Linux File Systems

Ext4 (Fourth Extended File System) is a high-performance, journaling file system widely used
in Linux environments. It is an evolution of its predecessors, Ext3 and Ext2. Ext4 is the default file
system for many Linux distributions, as it is battle-tested and a good choice for general purpose
desktop computing needs.

Key features of Ext4 include:

1. Journaling: Like Ext3, Ext4 is a journaling file system, meaning it keeps a log (or journal)
of changes to the file system before committing them to disk. This helps prevent data
corruption in the event of a system crash or power failure, as the journal can be used to
roll back or replay incomplete operations. Additionally, Ext4 uses checksums in the journal
to improve reliability. This feature has a side benefit: it can safely avoid a disk I/O wait
during journaling, improving performance slightly.

2. Larger File and Volume Support: Ext4 supports file sizes between 16 - 256 TiB and
volumes up to 1 EiB, making it suitable for modern storage needs. This was a significant
improvement over Ext3, which, depending on block size, was limited to 2 - 32 TiB volumes
and 16 GiB - 2 TiB file sizes.

3. Extents: Extents replace the traditional block mapping scheme used by ext2 and ext3. An
extent is a range of contiguous physical blocks, improving large-file performance and
reducing fragmentation.

4. Backward Compatibility: Ext4 is backward compatible with Ext3, meaning you can
mount an Ext3 file system as Ext4 and take advantage of the newer features without
needing to reformat the partition.

5. Delayed Allocation: Ext4 provides better performance compared to Ext3, thanks to
delayed allocation, which improves write performance and multi-block allocation,
optimizing space usage. This further helps to reduce fragmentation.

6. Extended Attributes: Ext4 supports extended attributes, allowing additional metadata
to be attached to files (e.g. security labels, file system flags, user tags). This is useful for
extending file properties with arbitrary application metadata to offer advanced file
management.

7. Online Defragmentation: Unlike Ext3, Ext4 provides the ability to perform online
defragmentation, which allows the file system to be defragmented while the system is
running, reducing the impact on performance.

Ext4 is a solid choice for every-day computing needs. It's simple, robust and well tested in the field.
However, its developers have stated that Ext4 is just a stop-gap until more modern file systems like
Btrfs mature and reach the same performance and robustness levels as Ext4.

Ext4: the reliable all-rounder

https://wiki.archlinux.org/title/Extended_attributes

Linux File Systems

Btrfs (B-tree File System) is a modern, copy-on-write (COW) file system for Linux designed to
address the limitations of older file systems like Ext4. It provides advanced features such as
snapshots, data integrity verification, built-in volume management, and more. Btrfs aims to
combine the functionalities of traditional file systems and logical volume managers, making it a
versatile and powerful tool for managing storage.

Key features of Btrfs include:

1. Copy-on-Write (COW): Btrfs uses copy-on-write (COW) for data and metadata, meaning
that when data is modified, the changes are written to new locations on disk instead of
overwriting the original data. This approach ensures that the previous version of the data
is preserved, which is crucial for features like snapshots and data integrity. It also makes
copies of data on the same volume instantaneous, because both refer to the same block
of data on disk. COW provides benefits such as atomic writes, where operations are either
fully completed or not done at all, reducing the risk of data corruption.

2. Snapshots: Snapshots are read-only or read-write copies of the file system at a specific
point in time. Snapshots are efficient and fast because they share common data blocks
until changes to the data on the disk are made. Snapshots are ideal for backup, system
rollback, and testing purposes. They allow you to capture the state of the file system and
revert back to it later if necessary. With certain system configurations it is even possible
to boot into a snapshot.

3. Data Integrity and Checksumming: Btrfs provides checksumming for both data and
metadata. Every block of data and metadata is verified with a checksum when read or
written. If corruption is detected (e.g. due to hardware failure), Btrfs can attempt to
recover the data using its checksums. This feature significantly improves the file system's
reliability, especially in environments where data integrity is critical.

4. Built-in Volume Management: Btrfs includes volume management features natively,
which means it can handle multiple physical devices and manage them as a single logical
volume. This feature eliminates the need for external volume managers like LVM (Logical
Volume Manager). It supports RAID-like configurations (RAID 0, RAID 1, RAID 10) natively,
allowing users to create storage pools with redundancy and striping.

5. Compression and Deduplication: Btrfs natively supports transparent compression,
allowing data to be stored in a compressed format to save space. Several algorithms
(such as LZO and zstd) are available for use. Deduplication (removal of duplicate data)
can also be performed, making it ideal for environments with large amounts of redundant

Btrfs: modern and feature-
packed

data where storage space is precious.
6. Dynamic Sizing and Subvolumes: Btrfs allows the dynamic resizing of file systems,

making it easy to increase or decrease the size of volumes as needed, without requiring
reformatting or complex migrations. Subvolumes are logical divisions of a file system that
can be treated like separate file systems. Each subvolume can have its own set of
snapshots, making them useful for organizing data, creating backups, or managing
different applications in isolation. Subvolumes can also be used to install multiple different
operating systems on the same file system without getting into the way of one another.

7. Online Defragmentation: Btrfs supports online defragmentation, meaning that it can
reorganize and defragment the file system while the system is running, which can help
improve performance over time, especially on systems with high churn of small files.

8. Self-healing: In combination with its checksumming capabilities, Btrfs is able to self-heal
data when used with RAID configurations. For example, in a RAID 1 setup, if one disk has
corrupted data, Btrfs can detect the issue and restore the correct data from the mirrored
copy.

The rich feature set of Btrfs makes it a modern and versatile choice for data storage on Linux. Built-
in volume management at the file system level eliminates having to think about partition layouts
and sizes, while the RAID capabilities make an underlying software RAID layer redundant.
Snapshots allow for quick rollbacks to a previous state of the system without wasting precious
space. Transparent compression and deduplication maximize efficient use of storage space. When
used effectively, Btrfs is an excellent and future-proof choice.

However, because Btrfs is still a relatively new file system, some features are still not considered
ready for daily use, e.g. integrated RAID 5/6 support currently being considered unstable. It also
often ranks worse than other file systems in areas where high throughput is important, such as
database applications or as backing storage for virtual machines. The complex feature set may also
pose a high learning curve for people unfamiliar with its concepts.

Linux File Systems

XFS is a high-performance journaling file system created by Silicon Graphics, Inc. for their IRIX
workstations. XFS is particularly proficient at parallel I/O due to its allocation group based design.
This enables extreme scalability of I/O threads, filesystem bandwidth, file and filesystem size when
spanning multiple storage devices.

Key features of XFS include:

1. Journaling: Like other journaling file systems, XFS keeps a log (journal) of file system
changes before they are written to disk. This helps ensure data integrity in the event of a
system crash or power failure, as the file system can use the journal to recover
incomplete operations.

2. Scalability: XFS is designed to handle large volumes and large files efficiently. It supports
file systems as large as 16 EiB and individual file sizes up to 8 EiB, making it suitable for
modern data centers and high-performance applications that require managing vast
amounts of data.

3. Parallel I/O: XFS is optimized for parallel I/O operations, which improves performance for
applications with heavy read/write demands like databases or large media files.

4. Extents-based Allocation: XFS uses extents (contiguous blocks of storage) to manage
files, which reduces fragmentation and improves throughput when working with large
files.

5. Online Defragmentation: XFS supports online defragmentation, allowing for
defragmentation of the file system without having to unmount it. This is particularly useful
for maintaining performance on systems with minimal downtime.

6. Dynamic Allocation: XFS supports dynamic inode allocation, meaning that inodes (the
data structures used to store metadata about files) can be created as needed, improving
the file system’s efficiency when dealing with a large amount of files.

7. Data Integrity: In addition to journaling, XFS also provides checksumming of metadata,
which helps ensure data integrity and detect corruption. This is important for
environments where data reliability is critical.

8. Efficient Space Management: XFS is known for its efficient space management. It uses
techniques like delayed allocation and aggressive pre-allocation to minimize disk
fragmentation and optimize disk space usage

XFS is the file system of choice when high throughput and performance are important. It's the file
system of choice for storage arrays found in servers and NAS systems. It is a good choice for the
backing storage for virtual machine environments and high availability database applications.
While it lacks some of the advanced features found in other file systems (like snapshots or
compression), it excels in areas such as scalability, performance, and data integrity. XFS is well-
suited for applications requiring fast, reliable access to large datasets.

XFS: the workhorse

Areas that XFS does not perform well in is handling large amounts of small files, as it stays true to
its data center and workstation roots. Another downside of XFS is that while it's easy to grow the
file system, it is not (yet) possible to shrink it. XFS recovery, while reliable, can be more complex
than other file systems in cases of severe corruption, and its repair tools are not as user-friendly as
those for Ext4.

Linux File Systems

ZFS (Zettabyte File System) is a high-performance, advanced file system originally developed
by Sun Microsystems (now part of Oracle) for the Solaris operating system. ZFS combines both a
file system and a volume manager, providing integrated management of storage. It is known for its
robust features, such as data integrity, high scalability, fault tolerance, and ease of management,
making it a popular choice in enterprise environments, as well as for personal use by those
requiring advanced features in Linux or FreeBSD.

Key features of ZFS include:

1. Data Integrity and Checksumming: One of ZFS's standout features is its data integrity
capabilities. It uses checksums for all data and metadata. Every block of data is verified
when read and written, ensuring that corruption is detected and corrected. If corruption
occurs (e.g. from disk errors), ZFS can automatically attempt to repair it using redundant
copies or RAID-like configurations.

2. Copy-on-Write (COW): ZFS utilizes copy-on-write, meaning that when data is modified,
it is not overwritten in place. Instead, new data is written to a different location, and once
the write operation is complete, the system updates its pointers to the new location. This
ensures that the file system always remains in a consistent state, even in the event of a
power failure or system crash.

3. Snapshots: ZFS supports snapshots, which are read-only or read-write copies of the file
system at a particular point in time. Snapshots are efficient in terms of storage because
they only store changes made after the snapshot was taken, not the entire data set. This
makes snapshots an ideal tool for rollbacks.

4. Pooled Storage: Unlike traditional file systems, ZFS combines file system and volume
management, allowing it to create storage pools (called Zpools). Zpools abstract physical
devices into a single logical pool of storage and data is automatically distributed across
multiple devices. This allows ZFS to easily manage devices of varying sizes, providing
better flexibility and redundancy. Additionally, pools can have cache devices, combinging
the capacity of spinning hard drives with the speed of solid state drives to increase
performance.

5. RAID-Z: ZFS includes its own RAID-like functionality, called RAID-Z, which provides data
redundancy and improved performance. RAID-Z can be thought of as a more advanced
version of RAID 5, with better protection against data loss due to disk failures. RAID-Z
offers different configurations: RAID-Z1 (single parity), RAID-Z2 (double parity), and RAID-
Z3 (triple parity), providing varying levels of fault tolerance.

ZFS: the file system to end
all file systems

6. Compression: ZFS supports inline compression, meaning that data is compressed as it is
written to disk. This can significantly reduce storage space usage. ZFS supports multiple
compression algorithms (e.g. LZ4, ZLE, zstd). Compression is transparent and data is
automatically decompressed when read.

7. Deduplication: ZFS offers deduplication, which ensures that duplicate data is stored only
once. This feature can be particularly useful in environments where many identical files
are stored (e.g. backups or virtual machine images). However, deduplication can be
resource-intensive and should be used with caution on systems with limited memory.

8. High Scalability: ZFS is highly scalable, supporting file systems and storage pools up to
256 trillion YiB (2128 bytes) in size with a maximum file size of 16 EiB. It can handle vast
amounts of data and large numbers of files, making it ideal for enterprise-level storage
solutions and large-scale data environments.

9. Self-Healing: ZFS provides self-healing capabilities. In case of data corruption (detected
through checksums), ZFS can automatically repair data by accessing redundant copies
(e.g. from RAID-Z). This ensures data reliability without requiring manual intervention.

With features like data integrity, compression, snapshots, RAID-Z, and self-healing, ZFS offers
exceptional storage management capabilities, making it ideal for large-scale enterprise
environments and applications requiring high availability and data protection. However, its
resource requirements, complexity, and limited support on non-Solaris platforms makes it diffucult
to use outside of these environments. For desktop computers, other file systems are generally a
better choice. For those who need enterprise-grade features and are willing to manage its
complexity, ZFS is the uncontested choice.

