
For audio handling on Linux, PipeWire is the currently recommended framework.

PipeWire is a server and user space API that provides a platform to handle multimedia pipelines. It
is a modern, low-latency audio and video server designed to work with the latest audio use cases
and handle professional audio interfaces and applications.

PipeWire was created as a replacement for both the PulseAudio sound server and the Jack Audio
Connection Kit (JACK) server. It provides a unified interface for handling video and audio streams
and is intended to be flexible and extensible, allowing it to address not only audio but other
multimedia tasks as well, such as video conferencing, screen capture, and other multimedia
applications. It can also work with different hardware devices, including webcams, microphones,
and professional audio devices.

Additionally, it integrates better with the security models of Flatpak and Wayland. It does so via
sandboxing processes from one another, preventing an application from snooping on other
applications' audio streams. Before allowing an application to record audio or sharing the
screen(e.g. in a browser over WebRTC) it will ask the user for permission to do so.

PipeWire implements no connection logic internally, that is the responsibility of a program called a
session manager. It watches for new streams and connects them to the appropriate output device
or application.

There are two session managers to choose from:

PipeWire Media Session: A very simple session manager that caters to some basic
desktop use cases. It was mostly implemented for testing and as an example for building
new session managers.
WirePlumber: A more powerful manager and the current recommendation. It is based on
a modular design, with Lua plugins that implement the actual management functionality.

WirePlumber is the recommended choice, as it is better maintained, receives regular updates and
is more feature-rich.

The most basic PipeWire setup includes the following packages:

Sound

Installation

Additional packages can be installed to extend PipeWire's compatibility and capabilities:

Package Description

pipewire-alsa Support for routing ALSA clients through PipwWire

pipewire-jack Support for JACK clients

pipewire-pulse Support for PulseAudio clients (recommended)

pipewire-v4l2 Support for handling video devices, e.g. webcams, tuners,
etc.

pipewire-zeroconf Support for streaming audio over the network, e.g. an
AirPlay receiver

PipeWire can send audio to an AirPlay receiver via the pipewire-zeroconf package, which includes the
necessary RTSP/RAOP modules to create a sink to send audio data to. This requires the Avahi
zeroconf daemon.

Refer to the Network section on how to install and setup Avahi.

If you're using a firewall, make sure that the following ports are open:

Port Protocol Service

554 TCP RTSP

554 UDP RTSP

NOTE: PipeWire handles Bluetooth audio devices if the pipewire-audio package is installed.

pacman -S pipewire pipewire-audio wireplumber

Streaming audio to an AirPlay
receiver

Firewall ports

TIP: firewalld has a preset for RTSP. Make sure to apply the firewall changes permanently.

https://wiki.sebin-nyshkim.net/books/arch-linux/page/network#bkmrk-avahi
https://wiki.sebin-nyshkim.net/books/arch-linux/page/bluetooth

Port Protocol Service

6001 UDP Some 3rd party AirPlay receivers use
this

6002 UDP Some 3rd party AirPlay receivers use
this

Create a new drop-in config file, e.g. ~/.config/pipewire/pipewire.conf.d/raop-discover.conf :

Auto-load PipeWire RAOP discovery
module

context.modules = [
 {
 name = libpipewire-module-raop-discover
 args = {
 #raop.latency.ms = 1000
 stream.rules = [
 {
 matches = [
 {
 raop.ip = "~.*"
 #raop.ip.version = 4 | 6
 #raop.ip.version = 4
 #raop.port = 1000
 #raop.name = ""
 #raop.hostname = ""
 #raop.domain = ""
 #raop.device = ""
 #raop.transport = "udp" | "tcp"
 #raop.encryption.type = "RSA" | "auth_setup" | "none"
 #raop.audio.codec = "PCM" | "ALAC" | "AAC" | "AAC-ELD"
 #audio.channels = 2
 #audio.format = "S16" | "S24" | "S32"
 #audio.rate = 44100
 #device.model = ""
 }
]
 actions = {

Restart the pipewire user unit to make pipewire read the new drop-in config file and load the RAOP
module automatically upon login:

You can use the avahi-browse utility to scan for devices on your network:

This will produce a list of devices broadcasting mDNS services over the network (not only AirPlay,
but also file sharing, Spotify, Home Kit and various others).

You should now be able to ping your AirPlay receiver using its .local DNS name:

If everything worked as intended wpctl status should list new sinks to output audio to:

 create-stream = {
 #raop.password = ""
 stream.props = {
 #target.object = ""
 #media.class = "Audio/Sink"
 }
 }
 }
 }
]
 }
 }
]

systemctl restart --user pipewire

Scan for devices on the network

avahi-browse --all --ignore-local --terminate

ping my-airplay-receiver.local

...
Audio
 ├─ Devices:
 │ 53. Starship/Matisse HD Audio Controller [alsa]
 │
 ├─ Sinks:

Finally, use your desktop environment's audio settings panel to select your AirPlay receiver as
audio output device.

 │ 47. My AirPlay Reciever [vol: 1.00]
 │ * 61. Starship/Matisse HD Audio Controller Analog Stereo [vol: 1.00]
...

Revision #5
Created 11 February 2022 19:38:26 by Sebin
Updated 6 March 2024 10:03:38 by Sebin

