
LUKS (Linux Unified Key Setup) is the standard for Linux hard disk encryption. By providing a
standard on-disk-format, it does not only facilitate compatibility among distributions, but also
provides secure management of multiple user passwords. LUKS stores all necessary setup
information in the partition header, enabling to transport or migrate data seamlessly.

Management of LUKS encrypted devices is done via the cryptsetup utility.

The simplest, most basic encrypted partitioning scheme in a Linux operating system consists of 3
partitions:

Type File System Description

EFI System Partition vfat Stores boot loaders and bootable OS
images in .efi format

Root File System LUKS2 Stores the Linux OS files (kernel,
system libraries, applications, user
data)

Swap Plain Stores swapped memory pages from
RAM during high memory pressure

This guide assumes the following:

There is only 1 disk that needs partitioning
/dev/nvme0n1 is the primary disk

Singular file system (LUKS,
encrypted)

NOTE: Why should you encrypt your data? Encryption ensures that no one but the rightful
owner has access to the data. Encryption is therefore not only used to hide sensitive data
from prying eyes, it also serves to protect your privacy. Encryption should be considered
especially for portable devices such as laptops. In the event of loss or theft, encryption
ensures that personal data and secrets (passwords, key files, etc.) do not fall into the wrong
hands and are less likely and not as easily be abused.

Preparing the disk

https://gitlab.com/cryptsetup/cryptsetup

Determine the disks that are installed on your system. This can easily be done with fdisk :

It outputs a list of disk devices with one or more entries similar to this:

The line starting the device file with /dev/ is the relevant one. Start partitioning the disk with cfdisk
:

If the disk has no partition table yet, cfdisk will ask you to specify one. The default partition table
format for UEFI systems is gpt . Create a layout with at least 3 partitions:

Size FS Type

1G EFI System

(RAM size) Linux Swap

(remaining) Linux root (x86-64)

You can verfiy that the partitions have been created by running fdisk -l again:

fdisk -l

Disk /dev/nvme0n1: 232.89 GiB, 250059350016 bytes, 488397168 sectors
Disk model: Samsung SSD 840
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

WARNING: Make sure you are modifying the correct device, else you will lose data!

cfdisk /dev/nvme0n1

NOTE: Specifying the correct file system type allows some software to automatically detect
and assign appropriate mount points to partitions. See Discoverable Partitions Specification
for more details.

Disk /dev/nvme0n1: 232.89 GiB, 250059350016 bytes, 488397168 sectors
Disk model: Samsung SSD 840
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

https://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec/

This time fdisk will also list the partitions present on the disk.

Before writing a file system to the disk a LUKS container needs to be created with the cryptsetup
utility:

Open the newly created LUKS container and supply the passphrase you just set:

Create file systems for the ESP and the root file system:

I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

Device Start End Sectors Size Type
/dev/nvme0n1p1 2048 2099199 2097152 1G EFI System
/dev/nvme0n1p2 2099200 35653631 33554432 16G Linux swap
/dev/nvme0n1p3 35653632 488396799 452743168 215.9G Linux root (x86-64)

NOTE: You might notice a pattern with how Linux structures its block devices. Partitions also
count as "devices" which you can interact with. Each partition has an incrementing counter
attached to its name to specify its order in the partition layout.

Formatting partitions

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to access the
data inside the container anymore!

cryptsetup luksFormat /dev/nvme0n1p3

NOTE: cryptroot is used as an example here. It is the "mapper name" under which the
opened LUKS container will be available at, in this example: /dev/mapper/cryptroot . You may
use whatever name you like.

cryptsetup open /dev/nvme0n1p3 cryptroot

Formatting and mounting partitions

Mount the file systems:

mkfs.fat -F 32 /dev/nvme0n1p1
mkfs.ext4 /dev/mapper/cryptroot

mount /dev/mapper/cryptroot -o noatime /mnt
mount --mkdir /dev/nvme0n1p1 /mnt/efi

NOTE: For an additional layer of security and privacy, swap space is going to be set up to be
re-encrypted with a random passphrase on every boot in a later step. This way contents that
have been swapped out of RAM and onto disk become inacessible after the machine has
been powered off.

Revision #3
Created 5 March 2024 16:39:31 by Sebin
Updated 3 February 2025 16:10:23 by Sebin

