
Secure Boot is a security feature found in the UEFI standard, designed to add a layer of protection
to the pre-boot process: by maintaining a cryptographically signed list of binaries authorized or
forbidden to run at boot, it helps in improving the confidence that the machine core boot
components (boot manager, kernel, initramfs) have not been tampered with.

To determine the current state of Secure Boot execute:

The output looks something like this:

In order to proceed you need to set your firmware's Secure Boot mode into "setup" mode to
proceed. This can usually be achieved by wiping the key store of the firmware. Refer to your
mainboard's user manual on how to do this.

Secure Boot

ATTENTION: When using Secure Boot it's imperative to use it with disk encryption. If the
storage device that stores the keys is not encrypted, anybody can read the keys and use
them to sign bootable images, thereby defeating the purpose of using Secure Boot at all.

Preparations

bootctl status

System:
 Firmware: UEFI 2.70 (American Megatrends 5.17)
 Firmware Arch: x64
 Secure Boot: enabled (user)
 TPM2 Support: yes
 Measured UKI: yes
 Boot into FW: supported

...

Installation

For the most straight-forward Secure Boot toolchain install sbctl :

It tremendously simplifies generating Secure Boot keys, loading keys into firmware and signing
kernel images.

Secure Boot implementations use these keys:

Key Type Description

Platform Key (PK) Top-level key

Key Exchange Key (KEK) Keys used to sign Signatures Database and Forbidden
Signatures Database updates

Signature Database (db) Contains keys and/or hashes of allowed EFI binaries

Forbidden Signatures Database (dbx) Contains keys and/or hashes of denylisted EFI binaries

To generate new keys and store them under /usr/share/secureboot/keys/ :

A unified kernel image (UKI) combines an EFI stub image, CPU microcode, kernel command line and
an initramfs into a single file that can be read and executed by the machines UEFI firmware. It also
makes it easier to sign for secure boot as there will be only a single file to sign.

Starting with v31 mkinitcpio is able to create UKIs out-of-the-box. The maintainers of sbctl also
recommend using the system's initramfs generation tool instead of sbctl bundle .

To make mkinitcpio generate UKIs, edit the appropriate .preset file for your kernel in
/etc/mkinitcpio.d/ :

uncomment the default_uki and fallback_uki lines
point the file path to somewhere on your EFI System Partition (e.g. /efi , /boot or /boot/efi)

pacman -S sbctl

Generating keys
SEE ALSO: The Meaning of all the UEFI Keys

sbctl create-keys

Unified Kernel Image

https://blog.hansenpartnership.com/the-meaning-of-all-the-uefi-keys/

As mkinitcpio sources command line parameters from a specific file by default, saving them to that
file further streamlines the generation process.

First create the directory and open a new file in there:

NOTE: mkinitcpio automatically sources /etc/kernel/cmdline for the included kernel command
line arguments. If you want the fallback image to receive a different set of kernel command
line arguments, specify a different file path in fallback_options with the --cmdline argument. It
also sources drop-in files under /etc/cmdline.d/ during UKI generation. However, the latter
won't allow you to pass different command line arguments for the default and fallback
image.

NOTE: Placing the UKI under /efi/EFI/Linux/ allows systemd-boot to automatically detect
images and list them without having to specifically create boot entries for them.

mkinitcpio preset file for the 'linux' package

#ALL_config="/etc/mkinitcpio.conf"
ALL_kver="/boot/vmlinuz-linux"

PRESETS=('default' 'fallback')

#default_config="/etc/mkinitcpio.conf"
default_image="/boot/initramfs-linux.img"
default_uki="/efi/EFI/Linux/arch-linux.efi" # NEW
#default_options="--splash /usr/share/systemd/bootctl/splash-arch.bmp"

#fallback_config="/etc/mkinitcpio.conf"
fallback_image="/boot/initramfs-linux-fallback.img"
fallback_uki="/efi/EFI/Linux/arch-linux-fallback.efi" # NEW
fallback_options="-S autodetect --cmdline /etc/kernel/cmdline_fallback" # NEW

Kernel Command Line Parameters

mkdir /etc/kernel
nano /etc/kernel/cmdline

The parameters to include depend on the kind of initramfs used. You can use any of the persistent
block device naming schemes to pass the device. You also need to specify a mapper name under
which the decrypted root file system should be made available for mounting.

You can obtain the block device identifier for the LUKS container, e.g. its UUID, with blkid (using
/dev/sda1 as an example):

Continue to specify additional kernel command line parameters you need. At minimum it should
look like this:

busybox:

cryptdevice=UUID=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX:cryptroot
root=/dev/mapper/cryptroot rw

systemd:

rd.luks.name=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX=cryptroot root=/dev/mapper/cryptroot
rw

NOTE: Pressing Ctrl + T inside nano allows you to paste the result of a command at the
current cursor position.

blkid -s UUID -o value /dev/sda1

TIP: You can further simplify this by using a systemd-based initramfs. Create a file named
/etc/crypttab.initramfs and specify your encrypted devices in there (same syntax as regular
/etc/crypttab , see crypttab(5)):

This allows you to omit any rd.luks parameters, which leaves you with a kernel command
line that looks like this:

<name> <device> <passphrase> <options>
cryptroot UUID=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX discard

root=/dev/mapper/cryptroot rw

ATTENTION: Keep the specialties of your chosen root file system in mind, e.g. if using btrfs
you also need to supply the subvolume that should be mounted: rootflags=subvol=@ .

https://wiki.archlinux.org/title/Persistent_block_device_naming
https://wiki.archlinux.org/title/Persistent_block_device_naming
https://man.archlinux.org/man/crypttab.5.en

To enroll your keys, simply:

Next, add the images to the list of files to be signed (one at a time):

NOTE: By default, dm-crypt does not allow TRIM for SSDs for security reasons (information
leak). To override this behavior:

busybox: append :allow-discards after the device mapper name
systemd: do one of the following

add rd.luks.options=discard as an additional kernel command line parameter
specify the discard option in /etc/crypttab.initramfs in the options field

Enroll keys in firmware
WARNING: Replacing the platform keys with your own can end up bricking your machine,
making it impossible to get into the UEFI/BIOS settings to rectify the situation. This is due to
the fact that some device firmware (OpROMs, e.g. GPU firmware), that gets executed during
boot, may be signed using Microsoft's keys. Run sbctl enroll-keys --microsoft if you're unsure if
this applies to you (enrolling Microsoft's Secure Boot keys alongside your own custom ones)
or include the TPM Event Log with sbctl enroll-keys --tpm-eventlog (if your machine has a TPM
and you don't need or want Microsoft's keys) to prevent bricking your machine.

ATTENTION: Make sure your firmware's Secure Boot mode is set to setup mode! You can
do this by going into your firmware settings and wiping the factory default keys.
Additionally, keep an eye out for any setting that auto-restores the default keys on system
start.

TIP: If you plan to dual-boot Windows, run sbctl enroll-keys --microsoft to enroll Microsoft's
Secure Boot keys along with your own custom keys.

sbctl enroll-keys

Automated signing of UKIs

sbctl sign --save /efi/EFI/Linux/arch-linux.efi
sbctl sign --save /efi/EFI/Linux/arch-linux-fallback.efi

https://wiki.sebin-nyshkim.net/books/arch-linux/page/trusted-platform-module

The sbctl package comes with a pacman hook to execute sbctl sign-all -g on kernel upgrades or
installs. The UKIs are ready to be booted directly by the UEFI firmware (EFISTUB booting) or via a
bootloader like grub , systemd-boot or rEFInd .

If you plan on using a boot loader, you will also need to add its *.efi executable(s) to the sbctl
database, e.g. systemd-boot :

Upon system upgrades, pacman will call sbctl to re-sign the files listed in sbctl 's database.

systemd comes with a systemd-boot-update.service unit file to automate updating the bootloader
whenever systemd is updated. However, it only updates the bootloader after a reboot, by which
time sbctl has already run the signing process. This would necessitate manual intervention.

Recent versions of bootctl look for a .efi.signed file before a regular .efi file when copying
bootloader files during install and update operations. So to integrate better with the auto-update
functionality of systemd-boot-update.service , the bootloader needs to be signed ahead of time.

ATTENTION: Currently, the sbctl package also provides a post mkinitcpio hook which runs
sbctl after every kernel build. This means with the default linux kernel installed, sbctl will
run at least three times, twice for each time mkinitcpio runs during pacman package
upgrades and once after pacman finishes. The usefulness of the hook has been disputed. A
patch has been submitted.

For the time being, comment out the line calling sbctl sign-all -g in the hook file:
/usr/lib/initcpio/post/sbctl

Signing the Bootloader
NOTE: This is the manual method. If you also want to automate the bootloader update
process, skip to the section below.

sbctl sign --save /efi/EFI/BOOT/BOOTX64.EFI
sbctl sign --save /efi/EFI/systemd/systemd-bootx64.efi

Automate systemd-boot updates and
signing

https://github.com/Foxboron/sbctl/issues/284
https://github.com/Foxboron/sbctl/pull/285

This will add the source and target file paths to sbctl 's database. The pacman hook included with
sbctl will trigger whenever a file in usr/lib/**/efi/*.efi* changes, which will be the case when systemd
is updated and a new version of the unsigned bootloader is written to disk at
/usr/lib/systemd/boot/efi/systemd-bootx64.efi .

Finally, enable the systemd-boot-update.service unit:

Now when systemd is updated the signed version of the systemd-bootx64.efi booloader will be
copied to the ESP after a reboot, completely automating the bootloader update and signing
process!

sbctl sign --save -o /usr/lib/systemd/boot/efi/systemd-bootx64.efi.signed /usr/lib/systemd/boot/efi/systemd-
bootx64.efi

systemctl enable systemd-boot-update

Revision #22
Created 12 September 2021 12:50:00 by Sebin
Updated 11 October 2024 20:51:27 by Sebin

