
Use the Node Version Manager ( nvm ) to install Node.js into your current user's path and switch
Node.js versions on the fly.

Install nvm  via the AUR:

Include the init script /usr/share/nvm/init-nvm.sh  into your shell configuration to load it each time you
start your terminal:

Restart your terminal to reload all init scripts and you should be able to use nvm  to install a
Node.js version of your choice:

When you install and switch to a different nvm  managed version of Node.js ( nvm install 14  or nvm 
use 16 ) you may find that your globally installed npm  packages (e.g. svgo ) are no longer available
until you switch back to the specific version of Node.js you have been using before the upgrade or
switch.

This is because globally installed npm  packages are installed for the specific version of Node.js you
happen to be using at the time of installation and placed in a directory i.e.
~/.nvm/versions/node/v16.14.0/lib/node_modules . When you install a different version, e.g. 17.2.0  the
path to your Node.js installation changes to ~/.nvm/versions/node/v17.2.0/lib/node_modules .

Node.js (nvm)

yay -S nvm

# bash
echo 'source /usr/share/nvm/init-nvm.sh' >> ~/.bashrc

# zsh
echo 'source /usr/share/nvm/init-nvm.sh' >> ~/.zshrc

nvm install 12

Migrating globally installed npm
packages



Use the --reinstall-packages-from=<version>  option to carry over globally installed packages to the
new Node.js installation.

You can either pass a specific version you want to reinstall globally installed packages from or use
bash string expansion to reinstall from the currently active one in use:

nvm install <new version> --reinstall-packages-from=<old version>

nvm install 17 --reinstall-packages-from=$(node -v)

Revision #6
Created 6 May 2020 20:50:04 by Sebin
Updated 26 March 2023 03:28:21 by Sebin


