
Set up the default host name of the machine as well as localhost :

If your machine has Wi-Fi it is advisable to set the region for wireless radio waves to comply with
local regulations:

Previously we installed NetworkManager as our default network mangaging software. GNOME and
KDE have out of the box support for managing network connections in their settings dialogs in a
graphical manner. Both rely on NetworkManager.

Network

NOTE: sebin-desktop is used as an example here. Set $HOSTNAME to whatever you like.

Define an environment variable containing the desired hostname
export HOSTNAME='sebin-desktop'

Set the hostname of the machine
echo "$HOSTNAME" > /etc/hostname

Set localhost to resolve to the machine's loopback address
echo "127.0.0.1	localhost" >> /etc/hosts
echo "::1		localhost" >> /etc/hosts
echo "127.0.1.1	$HOSTNAME.localdomain	$HOSTNAME" >> /etc/hosts

Set wireless region

Install crda
pacman -S iw

Set the wireless region, e.g. Germany
iw reg set DE

Network manager

Enable NetworkManager to start at boot:

By default NetworkManager uses wpa_supplicant for managing Wi-Fi connections.

iwd (iNet wireless daemon) is a wireless daemon for Linux written by Intel. The core goal of the
project is to optimize resource utilization by not depending on any external libraries and instead
utilizing features provided by the Linux Kernel to the maximum extent possible.

To enable the experimental iwd backend, first install iwd and then create the following
configuration file:

With the following contents:

systemd-resolved is a systemd service that provides network name resolution to local applications
via a D-Bus interface, the resolve NSS service, and a local DNS stub listener on 127.0.0.53 .

Benefits of using systemd-resolved include:

resolvectl as the primary single command for interfacing with the network name resolver
service
A system-wide DNS cache for speeding up subsequent name resolution requests
Split DNS when using VPNs, which can help in preventing DNS leaks when connecting to
multiple VPNs (See Fedora Wiki for a detailed explenation why this is important)
Integrated DNSSEC capabilities to verify the authenticity and integrity of name resolution
requests, e.g. to prevent cache poisoning/DNS hijacking

systemctl enable NetworkManager

Using iwd as the Wi-Fi backend (optional)

mkdir /etc/NetworkManager/conf.d
nano /etc/NetworkManager/conf.d/wifi_backend.conf

[device]
wifi.backend=iwd

systemd-resolved for DNS name
resolution

https://iwd.wiki.kernel.org/networkmanager
https://fedoraproject.org/wiki/Changes/systemd-resolved#Benefit_to_Fedora
https://en.wikipedia.org/wiki/DNS_hijacking

DNS over TLS for further securing name resolution requests by encrypting them,
improving privacy (not to be confused with DNS over HTTPS)

To use systemd-resolved enable the respective unit:

To provide domain name resolution for software that reads /etc/resolv.conf directly, such as web
browsers and GnuPG, systemd-resolved has four different modes for handling the file

stub
static
uplink
foreign

The recommende mode is stub, which uses /run/systemd/resolve/stub-resolv.conf , and contains the
local stub 127.0.0.53 as the only DNS server and a list of search domains.

This propagates the systemd-resolved managed configuration to all clients. To use it, replace
/etc/resolv.conf with a symbolic link to it:

When set up this way, NetworkManager automatically picks up systemd-resolved for network name
resolution.

If systemd-resolved does not receive DNS server addresses from the network manager and no DNS
servers are configured manually then systemd-resolved falls back to the fallback DNS addresses to

systemctl enable systemd-resolved

ATTENTION: A few notes about setting this up:

Failure to properly configure /etc/resolv.conf will result in broken DNS resolution!
Attempting to symlink /etc/resolv.conf whilst inside arch-chroot will not be possible,
since the file is bind-mounted from the archiso live system. In this case, create the
symlink from outside arch-chroot :

ln -sf ../run/systemd/resolve/stub-resolv.conf /mnt/etc/resolv.conf

Some DHCP and VPN clients use the resolvconf program to set name server and
search domains (see this list). For these, you also need to install the systemd-
resolvconf package to provide a /usr/bin/resolvconf symlink.

ln -sf ../run/systemd/resolve/stub-resolv.conf /etc/resolv.conf

Fallback DNS servers

https://wiki.archlinux.org/title/Openresolv#Users

ensure that DNS resolution always works.

The fallback order is:

1. Cloudflare
2. Quad9 (without filtering and without DNSSEC)
3. Google

Fallback addresses can be manually set in a drop-in config file, e.g.
/etc/systemd/resolved.conf.d/fallback_dns.conf :

To disable the fallback DNS functionality set the FallbackDNS option without specifying any
addresses:

DNSSEC is a suite of extensions to the DNS system. Benefits of utilizing DNSSEC include
authentication and data integrity, but not encryption. For actually encrypting your DNS traffic, see
the section below.

systemd-resolved can be configured to use DNSSEC for validation of DNS requests. It can be
configured in three modes:

Setting Description

allow-downgrade Validate DNSSEC only if the upstream DNS server supports
it

true Always validate DNSSEC, breaking DNS resolution if the
server does not support it

false Disable DNSSEC validation entirely

ATTENTION: Depending on your use-case, you might not want to route all your DNS traffic
through the pre-determined fallback servers for privacy reasons. Do your own research on
fallback DNS servers that you want to trust.

[Resolve]
FallbackDNS=127.0.0.1 ::1

[Resolve]
FallbackDNS=

DNSSEC
WARNING: DNSSEC support in systemd-resolved is considered experimental and incomplete.

https://github.com/systemd/systemd/issues/25676#issuecomment-1634810897

Set up DNSSEC in a drop-in config file, e.g. /etc/systemd/resolved.conf.d/dnssec.conf :

DNS over TLS is a security protocol for encrypting DNS queries and responses via Transport Layer
Security (TLS), thereby increasing privacy and security by preventing eavesdropping and
manipulation of DNS requests in man-in-the-middle attack scenarios.

DNS over TLS in systemd-resolved is disabled by default. To enable validation of your DNS provider's
server certificate, include their hostname in the DNS setting in the format ip_address#hostname and
set DNSOverTLS to one of three modes:

Setting Description

opportunistic Attempt DNS over TLS when possible and fall back to
unencrypted DNS if the server does not support it

true Always use DNS over TLS, breaking resolution if the server
does not support it

false Disable DNS over TLS entirely

Set up DNS over TLS in a drop-in config file, e.g. /etc/systemd/resolved.conf.d/dns_over_tls.conf :

[Resolve]
DNSSEC=allow-downgrade

DNS over TLS

ATTENTION: When setting DNSOverTLS=opportunistic systemd-resolved will try to use DNS over
TLS and if the server does not support it fall back to regular DNS. Note, however, that this
opens you to "downgrade" attacks, where an attacker might be able to trigger a downgrade
to non-encrypted mode by synthesizinig a response that suggests DNS over TLS was not
supported.

WARNING: If setting DNSOverTLS=yes and the server provided in DNS= does not support
DNS over TLS all DNS requests will fail!

[Resolve]
DNS=9.9.9.9#dns.quad9.net 149.112.112.112#dns.quad9.net [2620:fe::fe]#dns.quad9.net
[2620:fe::9]#dns.quad9.net
DNSOverTLS=yes

Multicast DNS

systemd-resolved is capable of working as a multicast DNS (mDNS) resolver and responder. The
resolver provides hostname resolution using a "hostname.local" naming scheme.

mDNS support in systemd-resolved is enabled by default. For a given connection, mDNS will only be
activated if both mDNS in systemd-resolved is enabled, and if the configuration for the currently
active network manager enables mDNS for the connection.

The MulticastDNS setting in systemd-resolved can be set to one of the following:

Setting Description

resolve Only enables resolution support, but responding is
disabled

true Enables full mDNS responder and resolver support

false Disables both mDNS responder and resolver

To enable mDNS for a connection managed by NetworkManager tell nmcli to modify an existing
connection:

Avahi implements zero-configuration networking (zeroconf), allowing for multicast DNS/DNS-SD
service discovery. This enables programs to publish and discover services and hosts running on a

ATTENTION: If you plan on using systemd-resolved as mDNS resolver and responder consider
the following:

Some desktop environments have the avahi package as a dependency. To prevent
conflicts, disable or mask both avahi-daemon.service and avahi-daemon.socket
If you plan on using a firewall, make sure UDP port 5353 is open

nmcli connection modify CONNECTION_NAME connection.mdns yes

TIP: The default for all NetworkManager connections can be set by creating a configuration
file in /etc/NetworkManager/conf.d/ and setting connection.mdns=2 (equivalent to "yes") in the
[connection] section.

[connection]
connection.mdns=2

Avahi

https://en.wikipedia.org/wiki/Multicast_DNS

local network, e.g. network file sharing servers, remote audio devices, network printers, etc.

Some desktop environments pull in the avahi package as a dependency. It enables their file
manager to scan the network for services and make them easily accessible.

Avahi provides local hostname resolution using a "hostname.local" naming scheme. To use it,
install the avahi and nss-mdns package and enable Avahi:

Then, edit the file /etc/nsswitch.conf and change the hosts line to include mdns_minimal
[NOTFOUND=return] before resolve and dns :

To discover services running in your local network:

To query a specific host for the services it advertises:

Avahi also includes the avahi-discover graphical utility that lists the various services on your
network.

ATTENTION: If you plan on using avahi as mDNS resolver and responder consider the
following:

You need to disable mDNS in systemd-resolved . You can do so in a drop-in config file,
e.g. /etc/systemd/resolved.conf.d/mdns.conf :

[Resolve]
MulticastDNS=false

If you plan on using a firewall, make sure UDP port 5353 is open

pacman -S avahi nss-mdns
systemctl enable avahi-daemon

hosts: mymachines mdns_minimal [NOTFOUND=return] resolve [!UNAVAIL=return] files myhostname dns

avahi-browse --all --ignore-local --resolve --terminate

avahi-resolve-host-name hostname.local

Revision #7
Created 12 February 2022 00:56:17 by Sebin
Updated 6 March 2024 09:57:15 by Sebin

