
LUKS (Linux Unified Key Setup) is the standard for Linux hard disk encryption. By providing a
standard on-disk-format, it does not only facilitate compatibility among distributions, but also
provides secure management of multiple user passwords. LUKS stores all necessary setup
information in the partition header, enabling to transport or migrate data seamlessly.

Management of LUKS encrypted devices is done via the cryptsetup utility.

Term Description

Physical Volume (PV) On-disk partitioning format to be combined in a VG to a
common storage pool

Volume Group (VG) Grouping of one or more PVs to provide a combined
storage pool from which storage can be requested in the
form of LVs.

Logical Volume (LV) Logical partition format which can be accessed like a block
device to hold file systems and data.

LVM on LUKS (encrypted,
Laptop)

Nomenclature

Partitioning Setup
NOTE: This partitioning scheme does NOT include an LVM cache device.

While it is technically possible to add an LVM cache device to this setup, it is not advised to
do so, as this will leak plain text contents of the unlocked LUKS container into the
cache, which can be read in a hex editor by opening the raw device file directly — entirely
defeating the purpose of encrypting the disk!

A LUKS on LVM setup is recommended instead.

https://gitlab.com/cryptsetup/cryptsetup
https://wiki.sebin-nyshkim.net/books/arch-linux/page/partitioning-luks-on-lvm

LVM on LUKS has the benefit of being able to encrypt an entire drive (useful for laptops with
encrypted swap for resume) while only needing to provide a single passphrase to unlock it entirely
for simplicity.

However, since the LVM container resides inside the LUKS container it cannot span multiple disks,
as it is confined by the boundaries by the parent LUKS container.

This guide assumes the following:

This is used on a laptop computer with resume capabilities (Swap partition)
There is only one drive: /dev/nvme0n1
The root file system will be btrfs, with subvolumes for / and /home

To tighten security, this setup assumes a unified kernel image and booting via EFISTUB,
with the ESP mounted at /efi . Extra steps will be necessary to make the machine
bootable.

1. List available disks

fdisk -l

2. Start partitionaing tool for primary disk (cfdisk is a little easier to use as it has a nice TUI)

WARNING: Make sure to select your actually desired device!

cfdisk /dev/nvme0n1

3. Partition with the following scheme

FS Type Size Mount Point Comment

vfat 1G /efi EFI System

LUKS (remaining) Linux file system

1. Create the LUKS container and enter a passphrase

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to
access the data inside the container anymore!

cryptsetup luksFormat /dev/nvme0n1p2

Preparing the drive

Creating the LUKS container

https://wiki.archlinux.org/title/Systemd-boot#Preparing_a_unified_kernel_image
https://wiki.archlinux.org/title/EFISTUB
/books/arch-linux/page/boot-loader
https://wiki.sebin-nyshkim.net/books/arch-linux/page/secure-boot

2. Open the newly created LUKS container

NOTE: cryptlvm is used as an example here. Use whatever you like.

cryptsetup open /dev/nvme0n1p2 cryptlvm

1. Create an LVM physical volume inside LUKS container

pvcreate /dev/mapper/cryptlvm

2. Create the volume group:

vgcreate vg0 /dev/mapper/cryptlvm

3. Create the logical volumes

NOTE: When using resume, make lv_swap as large as RAM. In this example the
machine has 16 GB of RAM.

lvcreate -L 16G -n lv_swap vg0 # Swap as big as RAM (16 GB)
lvcreate -l 100%FREE -n lv_root vg0 # Root file system

1. Create partitions

mkfs.fat -F 32 /dev/nvme0n1p1 # EFI System Partition
mkfs.btrfs /dev/mapper/vg0-lv_root # Btrfs root volume
mkswap /dev/mapper/vg0-lv_swap # Swap space

2. Create Btrfs subvolumes

First, mount the root file system
mount /dev/mapper/vg0-lv_root /mnt

Create subvolumes
btrfs subvolume create /mnt/@
btrfs subvolume create /mnt/@home

3. Mount partitions

Creating LVM inside the LUKS container

Formatting devices

Unmount the root file system
umount -R /mnt

Mount the @ subvolume
mount /dev/mapper/vg0-lv_root -o noatime,compress-force=zstd,space_cache=v2,subvol=@ /mnt

Create mountpoints
mkdir -p /mnt/{efi,home}

Mount the remaining partitions/subvolumes
mount /dev/nvme0n1p1 /mnt/efi
mount /dev/mapper/vg0-lv_root -o noatime,compress-force=zstd,space_cache=v2,subvol=@home
/mnt/home

Activate swap
swapon /dev/mapper/vg0-lv_swap

Revision #17
Created 11 September 2021 13:44:38 by Sebin
Updated 6 March 2024 07:18:50 by Sebin

