
LUKS (Linux Unified Key Setup) is the standard for Linux hard disk encryption. By providing a
standard on-disk-format, it does not only facilitate compatibility among distributions, but also
provides secure management of multiple user passwords. LUKS stores all necessary setup
information in the partition header, enabling to transport or migrate data seamlessly.

Management of LUKS encrypted devices is done via the cryptsetup utility.

Term Description

Physical Volume (PV) On-disk partitioning format to be combined in a VG to a
common storage pool

Volume Group (VG) Grouping of one or more PVs to provide a combined
storage pool from which storage can be requested in the
form of LVs.

Logical Volume (LV) Logical partition format which can be accessed like a block
device to hold file systems and data.

Cache device Fast storage used for caching reads/writes to slow storage

Origin device Slow primary storage holding the actual data

LUKS on LVM has the benefit of a LUKS container being able to span multiple disks, thanks to the
machanisms of the underlying LVM. This, however, comes with the downside that if you want to
have multiple volumes (e.g. for your root volume and a separate home volume or encrypted SWAP)
you will have to take extra steps to unlock these volumes during the boot process.

LUKS on LVM (encrypted,
cached, Desktop)

Nomenclature

Partitioning Setup

NOTE: If you want to utilize LVM cache this is the desired partioning scheme to use, as the
encrypted LUKS container will reside inside an LVM LV and the LVM caching mechanism will
cache the LV instead of the unlocked LUKS container, thus not leaking any secrets into the

https://gitlab.com/cryptsetup/cryptsetup

This guide assumes the following:

This is used on a desktop computer without the need to resume (no SWAP partition)
There are multiple drives: /dev/nvme0n1 (SSD) and /dev/sda (HDD)
The HDD will be cached by the SSD
The root file system will be btrfs, with subvolumes for / and /home

To tighten security, this setup assumes a unified kernel image and booting via EFISTUB,
with the ESP mounted at /efi . Extra steps will be necessary to make the machine
bootable.

Start by listing available disks:

Create a partition layout with cfdisk by pointing it to the first disk, e.g. /dev/nvme0n1 :

If cfdisk asks you about the partition table scheme to use, select gpt .

Create the following partition layout:

FS Type Size Mount Point Comment

vfat 1G /efi EFI System

LVM (remaining) Linux LVM

Start cfdisk for the second disk, e.g. /dev/sda :

Create the following partition layout:

FS Type Size Mount Point Comment

LVM (all) Linux LVM

cache.

Preparing partition layout

fdisk -l

ATTENTION: cfdisk expects a device file, not a partition.

cfdisk /dev/nvme0n1

cfdisk /dev/sda

https://wiki.archlinux.org/title/Systemd-boot#Preparing_a_unified_kernel_image
https://wiki.archlinux.org/title/EFISTUB
/books/arch-linux/page/boot-loader
https://wiki.sebin-nyshkim.net/books/arch-linux/page/secure-boot

Start by creating LVM PVs on the partitions we just laid out:

Next, create a VG spanning both PVs:

Create an LV inside vg0 , using 100% of the available space on the PV at /dev/sda1 and label it
lv_root :

Create an LV inside vg0 , using 100% of the available space on the PV at /dev/nvme0n1p2 and label
it lv_cache :

Finally, link both LVs together so that the LV on the HDD is being cached by the pool on the SSD:

Create the LUKS container inside the LV of the origin device:

Open the newly created LUKS container and supply the passphrase you just set:

Setting up LVM

pvcreate /dev/nvme0n1p2 # SSD
pvcreate /dev/sda1 # HDD

NOTE: vg0 is used as an example here. Name your VG whatever you like.

vgcreate vg0 /dev/nvme0n1p2 /dev/sda1

lvcreate -l 100%FREE -n lv_root vg0 /dev/sda1

lvcreate -l 100%FREE -n lv_cache --type cache-pool vg0 /dev/nvme0n1p2

lvconvert --type cache --cachepool vg0/lv_cache vg0/lv_root

Creating the LUKS container

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to access the
data inside the container anymore!

cryptsetup luksFormat /dev/mapper/vg0-lv_root

NOTE: cryptroot is used as an example here. Use whatever you like.

Create file systems for the ESP and the root file system:

Mount the root btrfs file system and create the subvolumes:

Unmount the root btrfs file system:

Mount the @ subvolume:

Create mount points for /efi and /home :

Mount the remaining partitions and subvolumes:

cryptsetup open /dev/mapper/vg0-lv_root cryptroot

Formatting and mounting partitions

mkfs.fat -F 32 /dev/nvme0n1p1
mkfs.btrfs /dev/mapper/cryptroot

mount /dev/mapper/cryptroot /mnt

btrfs subvolume create /mnt/@
btrfs subvolume create /mnt/@home

umount -R /mnt

mount /dev/mapper/cryptroot -o noatime,compress-force=zstd,space_cache=v2,subvol=@ /mnt

mkdir -p /mnt/{efi,home}

mount /dev/nvme0n1p1 /mnt/efi
mount /dev/mapper/cryptroot -o noatime,compress-force=zstd,space_cache=v2,subvol=@home /mnt/home

Revision #3
Created 2 March 2022 13:41:09 by Sebin
Updated 6 March 2024 07:18:50 by Sebin

