
The initramfs contains all the necessary programs and config files needed to bring up the machine,
mount the root file system and hand off the rest of the boot process to the installed system. It can
be further customized with additional modules, binaries, files and hooks for special use cases and
hardware.

Every kernel in Arch Linux comes with its own .preset file stored in /etc/mkinitcpio.d/ with
configuration presets for mkinitcpio . Pacman hooks build a new image after every kernel upgrade or
installation of a new kernel.

To manually generate a Linux kernel image issue the following command:

This will generate a new kernel image with the settings of the preset file /etc/mkinitcpio.d/linux.preset .

To generate kernel images with every preset available, pass the -P argument:

To customize your initramfs, place drop-in configuration files into /etc/mkinitcpio.conf.d/ . They will
override the settings in the main configuration file at /etc/mkinitcpio.conf .

An overview of the settings you can customize:

initramfs

Usage
Automated image generation

Manual image generation

mkinitcpio -p linux

mkinitcpio -P

Configuration

Setting Type Description

MODULES Array Kernel modules to be loaded before
any boot hooks are run.

BINARIES Array Additional binaries you want included
in the initramfs image.

FILES Array Additional files you want included in
the initramfs image.

HOOKS Array Hooks are scripts that execute in the
initial ramdisk.

COMPRESSION String Which tool to use for compressing the
image.

COMPRESSION_OPTIONS Array Extra arguments to pass to the
COMPRESSION tool.

The MODULES array is used to specify modules to load before anything else is done.

Here you can specify additional kernel modules needed in early userspace, e.g. file system
modules (ext2 , reiser4 , btrfs), keyboard drivers (usbhid , hid_apple , etc.), USB 3 hubs (xhci_hcd) or
"out-of-tree" modules which are not part of the Linux kernel (mainly NVIDIA GPU drivers). It is also
needed to add modules for hardware devices that are not always connected but you would like to
be operational from the very start if they are connected during boot.

WARNING: Do not use the COMPRESSION_OPTIONS setting, unless you know exactly what you
are doing. Misuse can produce unbootable images!

MODULES

HINT: If you don't know the name of the driver of a device, lshw can tell you what hardware
uses which driver, e.g.:

*-usb:2
 description: USB controller
 product: Tiger Lake-LP USB 3.2 Gen 2x1 xHCI Host Controller
 vendor: Intel Corporation
 physical id: 14
 bus info: pci@0000:00:14.0
 version: 20
 width: 64 bits
 clock: 33MHz

Example of a MODULES array that adds two modules to the generated image needed for keyboard
input, if the keyboard is connected to a USB 3 hub, e.g. a docking station:

The BINARIES array holds the name of extra executables needed to boot the system. It can also be
used to replace binaries provided by HOOKS . The executable names are sourced from the PATH
evironment variable, associated libraries are added as well.

Example of a BINARIES array that adds the kexec binary:

This option usually only needs to be set for special use cases, e.g. when there's a binary you need
included that is not already part of a member in the HOOKS array.

The FILES array holds the full path to arbitrary files for inclusion in the image.

The second to last line starting with configuration shows the driver being used.

 capabilities: xhci bus_master cap_list
 -> configuration: driver=xhci_hcd latency=0
 resources: iomemory:600-5ff irq:163 memory:603f260000-603f26ffff

MODULES=(xhci_hcd usbhid)

CAUTION: Keep in mind that adding to the initramfs increases the size of the resulting
image on disk. Unless you have created your boot partition (more specifically the EFI System
partition at either /efi , /boot or /boot/efi) with generous space, you should limit yourself to
modules strictly needed for your system. The autodetect hook tries to detect all currently
loaded modules of the running system to determine the needed modules to include by
default. Only include additional modules if something doesn't work as expected.

ATTENTION: If you use an NVIDIA graphics card, the following modules are required in the
MODULES array for early KMS:

MODULES=(nvidia nvidia_modeset nvidia_uvm nvidia_drm)

BINARIES

BINARIES=(kexec)

FILES

Example of a module configuration file to be included in the image, containting the names of
modules to auto-load and optional module parameters:

This option usually only needs to be set for special use cases.

The HOOKS array is the most important setting in the file. Hooks are small scripts which describe
what will be added to the image. Hooks are referred to by their name, and executed in the order
they are listed in the HOOKS array.

The default HOOKS line in /etc/mkinitcpio.conf is as follows:

This creates a basic image suitable for most single disk systems.

A quick overview of the hooks and their meaning:

Hook Description

base Sets up all initial directories and installs base utilities and
libraries.

udev Adds the udev device manager to scan and set up devices.
Recommended for simple boot process.

autodetect Trims hooks after that come after to only include modules
that are needed for the current system. Keeps image slim.

microcode Includes CPU microcode updates in the image.

modconf Includes module configuration files from /etc/modprobe.d/
and /usr/lib/modprobe.d/ .

kms Adds modules to bring up graphics cards as early as
possible in the boot process.

FILES=(/etc/modprobe.d/modprobe.conf)

HOOKS

HINT: For a full list of availble hooks run:

See the help text for a hook with:

mkinitcpio -L

mkinitcpio -H hook_name

HOOKS=(base udev autodetect microcode modconf kms keyboard keymap consolefont block filesystems fsck)

Hook Description

keyboard Adds modules for keyboards. Required for keyboard input
in early userspace.

keymap Adds the specified keymap(s) from /etc/vconsole.conf .

consolefont Adds the specified console font from /etc/vconsole.conf .

block Adds block device modules needed to bring up different
kinds of storage devices.

filesystems Adds file system modules. Required unless file system
modules are specified in MODULES .

fsck Adds tools for checking file systems before they are
mounted. Strongly recommended!

By default, mkinitcpio will generate a busybox-based initramfs. It starts an init script that scans the
filesystem of the initramfs for scripts to execute and bring up the system and hand over the
remaining boot process to systemd once the root file system is mounted. This is fine for most use-
cases.

For special cases some additional hooks may be required for busybox to bring up the machine
properly:

Hook Description

usr Needed for when you have /usr on a separate partition

resume Needed for suspend-to-disk (hibernation) support

btrfs Needed for btrfs file systems that span multiple drives,
needs the btrfs-progs package installed

net Needed for booting from a network drive, needs the
mkinitcpio-nfs-utils package installed

dmraid Needed for fakeRAID (BIOS RAID) root devices, needs the
dmraid package installed

mdadm_udev Needed for assembling RAID arrays via udev (software
RAID), needs the mdadm package installed

encrypt Needed for booting from an encrypted file system, needs
the cryptsetup package installed

lvm2 Needed for booting a system that is on LVM, needs the
lvm2 package installed

One such special case is encryption, which would result in a HOOKS array that looks like this:

busybox

ATTENTION: The order in which hooks are placed in the array is important!

If you wish, you can also make systemd bring the whole system up start to finish. In this case
bootup will be handled by systemd unit files instead of scripts.

The benefit of this is faster boot times and some additional features not available to a busybox-
based intiramfs, e.g. unlocking LUKS encrypted file systems with a TPM or FIDO2 token and
automatic detection and mounting of partitions with the appropriate GUID Partition Table (GPT)
UUIDs (see: Discoverable Partition Specification).

To instruct mkinitcpio to build a systemd-based initramfs:

replace the udev hook with the systemd hook
replace the keymap and consolefont hooks with the sd-vconsole hook

The resulting HOOKS array should look something like this:

For special cases some additional hooks may be required for systemd to bring up the machine
properly:

Hook Description

mdadm_udev Needed for assembling RAID arrays via udev (software
RAID), needs the mdadm package installed

sd-encrypt Needed for booting from an encrypted file system, needs
the cryptsetup package installed

lvm2 Needed for booting a system that is on LVM, needs the
lvm2 package installed

One such special case is encryption, which would result in a HOOKS array that looks like this:

HOOKS=(base udev autodetect microcode modconf kms keyboard keymap consolefont block encrypt
filesystems fsck)

ATTENTION: In some cases it might be necessary to place the keyboard hook before the
autodetect hook to be able to enter the passphrase to unlock the encrypted file systems, e.g.
when using different keyboards requiring a different module from the one in use at the time
of building the initramfs.

systemd

HOOKS=(base systemd autodetect microcode modconf kms keyboard sd-vconsole block filesystems fsck)

ATTENTION: The order in which hooks are placed in the array is important!

https://uapi-group.org/specifications/specs/discoverable_partitions_specification/

The COMPRESSION option instructs mkinitcpio to compress the resulting images to save on space on
the EFI System Partition or /boot partition. This can be especially important if you include a lot of
modules and hooks and the size of the image grows.

Compressing the initramfs is a tradeoff between:

time it takes to compress the image
space saved
time it takes the kernel to decompress the image during boot

Which one you choose is something you have to decide on the constraints you're working with
(slow/fast CPU, available cores, RAM usage, disk space), but generally speaking the default zstd
compression strikes a good balance.

Algorithm Description

cat Uncompressed

zstd Best tradeoff between de-/compression time and image
size (default)

gzip Balanced between speed and size, acceptable
performance

bzip2 Rarely used, decent compression, resource conservative

lzma Very small size, slow to compress

xz Smallest size at longer compression time, RAM intensive
compression

lzop Slightly better compression than lz4, still fast to
decompress

lz4 Fast decompression, slow compression, "largest"
compressed output

HOOKS=(base systemd autodetect microcode modconf kms keyboard sd-vconsole block sd-encrypt filesystems
fsck)

ATTENTION: In some cases it might be necessary to place the keyboard hook before the
autodetect hook to be able to enter the passphrase to unlock the encrypted file systems, e.g.
when using different keyboards requiring a different module from the one in use at the time
of building the initramfs.

COMPRESSION

NOTE: See this article for a comprehensive comparison between compression algorithms.

https://web.archive.org/web/20240212214845/https://linuxreviews.org/Comparison_of_Compression_Algorithms

The COMPRESSION_OPTIONS setting allows you to pass additional parameters for the compression
tool. Available parameters depend on the algorithm chosen for the COMPRESSION option. Refer to
the tool's manual for available options. If left empty mkinitcpio will make sure it always produces a
working image.

COMPRESSION_OPTIONS
WARNING: Misuse of this option may lead to an unbootable system if the kernel is unable
to unpack the resultant archive. Do not set this option unless you're absolutely sure that
you have to!

Revision #8
Created 12 February 2022 00:58:09 by Sebin
Updated 3 February 2025 20:09:05 by Sebin

