
systemd comes with systemd-boot already, so no additional packages need to be installed.

To install systemd-boot to your EFI System Partition and create a boot loader entry named "Linux
Boot Manager" in your firmware:

This will copy /usr/lib/systemd/boot/efi/systemd-bootx64.efi to $ESP/EFI/systemd/systemd-
bootx64.efi and $ESP/EFI/BOOT/BOOTX64.EFI .

systemd-boot has two kinds of configs:

$ESP/loader/loader.conf : Configuration file for the boot loader itself
$ESP/loader/entries/*.conf : Configuration files for individual boot entries

Boot Loader

systemd-boot

Install

ATTENTION: By default, systemd-boot will install itself to either of the well-known ESP
locations, e.g. /efi , /boot , or (discouraged) /boot/efi . If your ESP is mounted somewhere
else pass the localtion with the --esp-path parameter.

bootctl install

NOTE: If a signed version of systemd-bootx64.efi exists as systemd-bootx64.efi.signed in the
same directory, bootctl copies the signed file instead.

NOTE: bootctl may complain about your ESP's mount point and the random seed file as
being "world accessible". This is to let you know your ESP's current file system permissions
are too open. To solve this, change the fmask and dmask mount options for your ESP in
/etc/fstab from 0022 to 0077 . Changes apply on next boot. See also: mount(8) $ Mount
options for fat

Configure

https://man.archlinux.org/man/mount.8#Mount_options_for_fat
https://man.archlinux.org/man/mount.8#Mount_options_for_fat

Setting Type Description

default string The pre-selected default boot entry.
Can be pre-determined value, file
name or glob pattern

timeout number Time in seconds until the default
entry is automatically booted

console-mode number/string Display resolution mode (0 , 1 , 2 ,
auto , max , keep)

auto-entries boolean Show/hide other boot entries found by
scanning the boot partition

auto-firmware boolean Show/hide "Reboot into firmware"
entry

An example loader configuration could look something like this:

Available parameters in boot entry config files:

Key Value Description

title string The name of the entry in the boot
menu (optional)

version string Human readable version of the entry
(optional)

Boot loader config

NOTE: For a full list of options and their explanation refer to loader.conf(5) § OPTIONS

ATTENTION: Only spaces are accepted as white-space characters for indentation, do not
use tabs!

default arch # pre-selects entry from $ESP/loader/entries/arch.conf

timeout 3 # 3 seconds before the default entry is booted

auto-entries 1 # shows boot entries which were auto-detected

auto-firmware 1 # shows entry "Reboot into firmware"

console-mode max # picks the highest-numbered mode available

Boot entry config

SEE ALSO: The Boot Loader Specification for a comprehensive overview of what systemd-
boot implements.

https://man.archlinux.org/man/loader.conf.5#OPTIONS
https://uapi-group.org/specifications/specs/boot_loader_specification/#boot-loader-entries

Key Value Description

machine-id string The unique machine ID of the
computer (optional)

sort-key string Used for sorting entries (optional)

linux path Location of the Linux kernel (relative
to ESP)

initrd path Location of the Linux initrd image
(relative to ESP)

efi path Location of an EFI executable, hidden
on non-EFI systems

options string Kernel command line parameters

devicetree path Binary device tree to use when
executing the kernel (optional)

devicetree-overlay paths List of device tree overlays. If
multiple, separate by space, applied
in order

architecture string Architecture the entry is intended for (
IA32 , x64 , ARM , AA64)

Type 1 entries specify their parameters in *.conf files under §ESP/loader/entries/ .

All paths in these configs are relative to the ESP, e.g. if the ESP is mounted at /boot a boot loader
entry located at $ESP/loader/entries/arch.conf would look like this:

When using a unified kernel image, any image ending with *.efi placed under $ESP/EFI/Linux/
will be automatically picked up by systemd-boot along with the metadata embedded in that image
(e.g. title, version, etc.)

Type 1 (text file based)

NOTE: As of mkinitramfs v38, the CPU microcode is embedded in the initramfs and it is no
longer necessary to specify CPU microcode images on a separate initrd line before the actual
initramfs.

title	Arch Linux

linux	/vmlinuz-linux

initrd	/initramfs-linux.img

options	rd.luks.name=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX=cryptroot root=/dev/mapper/cryptroot

rw

Type 2 (EFI executable)

https://archlinux.org/news/mkinitcpio-hook-migration-and-early-microcode/

If your UKIs are stored somewhere else, you will need a loader entry *.conf file with an efi key
pointing systemd-boot to the location of the *.efi file on the ESP:

EFISTUB is a method of booting the kernel directly as an EFI executable by the firmware without
the need to use a boot loader. This can be useful in cases where you want to reduce the attack
surface a boot loader can introduce, or you intend to only ever boot one image. However, some
UEFI firmware implementations can be flaky, so this isn't always practical.

To be able to manipulate EFI boot variables install efibootmgr :

To create a new entry efibootmgr needs to know the disk and partition where the kernel image
resides on the ESP.

In this example, the ESP is the first partition of the block device /dev/nvme0n1 . Kernel parameters
are part of the -u option. The partition that holds your root file system needs to be passed as a
persistent block device name.

title	Arch Linux

efi /EFI/Arch/linux.efi

EFISTUB

Install

pacman -S efibootmgr

Configure

ATTENTION: efibootmgr cannot overwrite existing boot entries and will disregard the
creation of a boot entry if one with the same label already exists. If you need to overwrite an
existing entry you will need to delete it first. Call efibootmgr without any arguments to list
all current boot entries:

To delete an entry, note its 4-digit boot entry order and instruct efibootmgr to delete it:

efibootmgr

efibootmgr -Bb XXXX

https://wiki.archlinux.org/title/Persistent_block_device_naming

You can get the persistent block device identifier of a file system with the blkid command, i.e. to
get the UUID of the root file system:

For ease of scriptability, save the values to environment variables:

Then create the boot entry using efibootmgr :

When using a unified kernel image you can instead just point to the UKI without needing to
specify any kernel parameters via the -u option (as these will be part of the UKI already):

NOTE: If you use LVM or LUKS, you can supply the device mapper name since that already
is persistent.

/dev/nvme0n1p1 is the ESP, hence /dev/nvme0n1p2 is the root fs

blkid -s UUID -o value /dev/nvme0n1p2

export ROOT=$(blkid -s UUID -o value /dev/nvme0n1p2)

export CMDL="root=UUID=$ROOT rw add_efi_memmap initrd=\\\initramfs-linux.img"

efibootmgr -c -L "Arch Linux" -d /dev/nvme0n1 -p 1 -l /vmlinuz-linux -u $CMDL -v

Unified kernel image

ATTENTION: If Secure Boot is enabled and the command line parameters are embedded in
the UKI, the embedded command line parameters will always take precedence, even if you
pass additional parameters with the -u option.

efibootmgr -c -L "Arch Linux" -d /dev/nvme0n1 -p 1 -l "EFI\Linux\archlinux-linux.efi" -v

Revision #16
Created 3 April 2021 22:19:38 by Sebin
Updated 3 February 2025 17:04:40 by Sebin

