
Different partioning schemes and their setup

Understanding Linux file systems
Singular file system
Singular file system (LUKS, encrypted)
Encrypt non-root devices (LUKS)
LVM + dm-cache (unencrypted)
LVM on LUKS (encrypted, Laptop)
LUKS on LVM (encrypted, cached, Desktop)

Partitioning

Linux supports a number of different file systems with different sets of features and intended use-
cases.

Ext4 is the latest iteration of the "Extended file system" and the default on most Linux
distributions. It supports journaling, which means the file system keeps a list of files that are to be
written to the disk and once the file has been written, it is removed from the journal. This improves
file system integrity in case of a power loss. It also features delayed allocation, which aims to
improve flash memory life. Ext4 also actively prevents file fragmentation when writing data.

Btrfs is a new type of Linux file system that is designed differently from Ext4 in some respects.

Btrfs is a copy-on-write (CoW for short) file system, which means that copies of files are only
"virtual" and do not occupy any additional storage space, and a copy only becomes "real" once it
has been changed. Writes do not overwrite data in place; instead, a modified copy of the block is
written to a new location, and metadata is updated to point at the new location.

Btrfs organizes its data in subvolumes, which can be mounted like partitions. Unlike partitions,
subvolumes do not have a fixed size. Instead, subvolumes are merely an organizational unit on the
same Btrfs partition, the size of which depends on the contents stored in them. Any number of
subvolumes can be created for different mount points, e.g. / and /home . This allows, amongst
other things, for multiple operating systems to be installed to the same disk on the same computer
without interfering with each other.

Another feature of Btrfs is its ability to create snapshots of the file system. The state of a
subvolume can be recorded in a snapshot, e.g. before a critical system update, in order to revert to
a previous state of the file system if necessary. Thanks to CoW, snapshots require very little
storage space compared to full-fledged backups (although they are no replacement for them!) and
can be mounted and booted from like regular subvolumes. This makes it possible to "rewind" the
state of the file system with comparatively little effort. Tools such as snapper or timeshift can

Understanding Linux file
systems

Ext4: The All-rounder

Btrfs: The new kid on the block

simplify and automate the process of creating during system updates and restoring from snapshots
from the commandline.

Btrfs also implements transparent compression of data blocks. Written data is automatically stored
in compressed form if the appropriate mount options are set. There are a number of different
compression algorithms to choose from, including lz4, gzip and Zstandard. This can also increase
the life span of flash based storage devices, as less data is written to the disk and not as much
wear-leveling is taking place.

Btrfs comes with RAID management for RAID 0, 1 and 10 built into the file system itself and makes
an additional software or firmware RAID superfluous for these configurations. In addition, the
integrated RAID functionality offers the advantage that it is aware of used and free data blocks in
mirrored setups, which can considerably speed up the reconstruction of a RAID, as only the used
blocks are reconstructed. Using the built-in RAID functionality in Btrfs also allows for more storage
devices to be added to the RAID later on.

XFS is a high-performance file system particularly proficient at parallel I/O due to its allocation
group based design. This makes it ideal for when you're dealing with bandwidth intensive tasks, i.e.
multiple processes accessing the file system simultaneously. Like ext4 it contains a journal for file
system consistency.

XFS keeps an overview over the free space on the file system, allowing it to quickly determine free
blocks large enough for new data in order to prevent file fragmentation.

XFS: large data made easy

The simplest, most basic partitioning scheme in any Linux operating system consists of 3
partitions:

Type File System Description

EFI System Partition vfat Stores boot loaders and bootable OS
images in .efi format

Root File System ext4, btrfs, XFS, or other Stores the Linux OS files (kernel,
system libraries, applications, user
data)

Swap Swap partition or file Stores swapped memory pages from
RAM during high memory pressure

This guide assumes the following:

There is only 1 disk that needs partitioning
/dev/nvme0n1 is the primary disk

Determine the disks that are installed on your system. This can easily be done with fdisk :

It outputs a list of disk devices with one or more entries similar to this:

The line starting the device file with /dev/ is the relevant one. Start partitioning the disk with cfdisk
:

Singular file system

Preparing the disk

fdisk -l

Disk /dev/nvme0n1: 232.89 GiB, 250059350016 bytes, 488397168 sectors
Disk model: Samsung SSD 840
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

If the disk has no partition table yet, cfdisk will ask you to specify one. The default partition table
format for UEFI systems is gpt . Create a layout with at least 3 partitions:

Size FS Type

1G EFI System

(RAM size) Linux Swap

(remaining) Linux root (x86-64)

You can verfiy that the partitions have been created by running fdisk -l again:

This time fdisk will also list the partitions present on the disk.

WARNING: Make sure you are modifying the correct device, else you will lose data!

cfdisk /dev/nvme0n1

NOTE: Specifying the correct file system type allows some software to automatically detect
and assign appropriate mount points to partitions. See Discoverable Partitions Specification
for more details.

Disk /dev/nvme0n1: 232.89 GiB, 250059350016 bytes, 488397168 sectors
Disk model: Samsung SSD 840
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

Device Start End Sectors Size Type
/dev/nvme0n1p1 2048 2099199 2097152 1G EFI System
/dev/nvme0n1p2 2099200 35653631 33554432 16G Linux swap
/dev/nvme0n1p3 35653632 488396799 452743168 215.9G Linux root (x86-64)

NOTE: You might notice a pattern with how Linux structures its block devices. Partitions also
count as "devices" which you can interact with. Each partition has an incrementing counter
attached to its name to specify its order in the partition layout.

https://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec/

Format the partition with the appropriate mkfs subcommand for the file system you want to use,
e.g. ext4:

Next mount the file systems:

Formatting partitions

mkfs.ext4 /dev/nvme0n1p3 # ext4 root file system
mkfs.fat -F 32 /dev/nvme0n1p1 # EFI System Partition
mkswap /dev/nvme0n1p2 # Swap space

ATTENTION: Depending on which file system you chose earlier for your root file system,
additional mount parameters might be beneficial or necessary, e.g. btrfs requires specifying
the subvolume you want to mount using the option subvol=NAME . Refer to the file system's
manual to determine relevant mount parameters.

mount /dev/nvme0n1p3 -o noatime /mnt
mount /dev/nvme0n1p1 --mkdir /mnt/efi
swapon /dev/nvme0n1p2

LUKS (Linux Unified Key Setup) is the standard for Linux hard disk encryption. By providing a
standard on-disk-format, it does not only facilitate compatibility among distributions, but also
provides secure management of multiple user passwords. LUKS stores all necessary setup
information in the partition header, enabling to transport or migrate data seamlessly.

Management of LUKS encrypted devices is done via the cryptsetup utility.

The simplest, most basic encrypted partitioning scheme in a Linux operating system consists of 3
partitions:

Type File System Description

EFI System Partition vfat Stores boot loaders and bootable OS
images in .efi format

Root File System LUKS2 Stores the Linux OS files (kernel,
system libraries, applications, user
data)

Swap Plain Stores swapped memory pages from
RAM during high memory pressure

This guide assumes the following:

There is only 1 disk that needs partitioning
/dev/nvme0n1 is the primary disk

Singular file system (LUKS,
encrypted)

NOTE: Why should you encrypt your data? Encryption ensures that no one but the rightful
owner has access to the data. Encryption is therefore not only used to hide sensitive data
from prying eyes, it also serves to protect your privacy. Encryption should be considered
especially for portable devices such as laptops. In the event of loss or theft, encryption
ensures that personal data and secrets (passwords, key files, etc.) do not fall into the wrong
hands and are less likely and not as easily be abused.

Preparing the disk

https://gitlab.com/cryptsetup/cryptsetup

Determine the disks that are installed on your system. This can easily be done with fdisk :

It outputs a list of disk devices with one or more entries similar to this:

The line starting the device file with /dev/ is the relevant one. Start partitioning the disk with cfdisk
:

If the disk has no partition table yet, cfdisk will ask you to specify one. The default partition table
format for UEFI systems is gpt . Create a layout with at least 3 partitions:

Size FS Type

1G EFI System

(RAM size) Linux Swap

(remaining) Linux root (x86-64)

You can verfiy that the partitions have been created by running fdisk -l again:

fdisk -l

Disk /dev/nvme0n1: 232.89 GiB, 250059350016 bytes, 488397168 sectors
Disk model: Samsung SSD 840
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

WARNING: Make sure you are modifying the correct device, else you will lose data!

cfdisk /dev/nvme0n1

NOTE: Specifying the correct file system type allows some software to automatically detect
and assign appropriate mount points to partitions. See Discoverable Partitions Specification
for more details.

Disk /dev/nvme0n1: 232.89 GiB, 250059350016 bytes, 488397168 sectors
Disk model: Samsung SSD 840
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

https://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec/

This time fdisk will also list the partitions present on the disk.

Before writing a file system to the disk a LUKS container needs to be created with the cryptsetup
utility:

Open the newly created LUKS container and supply the passphrase you just set:

Create file systems for the ESP and the root file system:

Disklabel type: gpt
Disk identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

Device Start End Sectors Size Type
/dev/nvme0n1p1 2048 2099199 2097152 1G EFI System
/dev/nvme0n1p2 2099200 35653631 33554432 16G Linux swap
/dev/nvme0n1p3 35653632 488396799 452743168 215.9G Linux root (x86-64)

NOTE: You might notice a pattern with how Linux structures its block devices. Partitions also
count as "devices" which you can interact with. Each partition has an incrementing counter
attached to its name to specify its order in the partition layout.

Formatting partitions

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to access the
data inside the container anymore!

cryptsetup luksFormat /dev/nvme0n1p3

NOTE: cryptroot is used as an example here. It is the "mapper name" under which the
opened LUKS container will be available at, in this example: /dev/mapper/cryptroot . You may
use whatever name you like.

cryptsetup open /dev/nvme0n1p3 cryptroot

Formatting and mounting partitions

Mount the file systems:

mkfs.fat -F 32 /dev/nvme0n1p1
mkfs.ext4 /dev/mapper/cryptroot

mount /dev/mapper/cryptroot -o noatime /mnt
mount --mkdir /dev/nvme0n1p1 /mnt/efi

NOTE: For an additional layer of security and privacy, swap space is going to be set up to be
re-encrypted with a random passphrase on every boot in a later step. This way contents that
have been swapped out of RAM and onto disk become inacessible after the machine has
been powered off.

If you have more than one hard disk that you need to encrypt (e.g. SSD as main disk, HDD as data
disk) there are a few things to keep in mind to ensure continued smooth operation without any loss
of convenience.

The layout is as follows:

Type File System Description

Home File System LUKS2 Stores user home directories and
personal files

Determine the disks that are installed on your system. This can easily be done with fdisk :

Start partitioning the disk with cfdisk :

If the disk has no partition table yet, cfdisk will ask you to specify one. The default partition table
format for UEFI systems is gpt . Create a layout with at least 3 partitions:

Size FS Type

(disk size) Linux home

Encrypt non-root devices
(LUKS)

Preparing the disk

fdisk -l

WARNING: Make sure you are modifying the correct device, else you will lose data!

cfdisk /dev/sda

NOTE: Specifying the correct file system type allows some software to automatically detect
and assign appropriate mount points to partitions. See Discoverable Partitions Specification

https://www.freedesktop.org/wiki/Specifications/DiscoverablePartitionsSpec/

Before writing a file system to the disk a LUKS container needs to be created with the cryptsetup
utility:

Open the newly created LUKS container and supply the passphrase you just set:

Create a file system for the home file system:

Mount the file systems:

for more details.

Formatting partitions

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to access the
data inside the container anymore!

NOTE: Using /dev/sda as an example of a SATA HDD that is intended to be mounted at
/home .

cryptsetup luksFormat /dev/sda1

NOTE: crypthome is used as an example here. It is the "mapper name" under which the
opened LUKS container will be available at, in this example: /dev/mapper/crypthome . You may
use whatever name you like.

cryptsetup open /dev/sda1 crypthome

Formatting and mounting partitions

mkfs.ext4 /dev/mapper/crypthome

mount --mkdir /dev/mapper/crypthome -o noatime /mnt/home

LVM dm-cache is a feature of the Linux device mapper, which uses a fast storage device to boost
data read/write speeds of a slower one. It achieves this by transparently copying blocks of
frequently accessed data to the faster storage device in the background. On subsequent
reads/writes the faster storage device is queried first. If the requested data blocks are not on there,
it automatically falls back on the slower source storage device.

This makes it possible to combine the benefits of SSD speeds with the low cost and high storage
capacity of HDDs, when comparable pure SSD-based storage with the same capacity is too
expensive or otherwise unavailable.

This guide assumes the following:

/dev/nvme0n1 is the primary disk (cache device)
/dev/sda is the secondary disk (origin device)

Term Description

Physical Volume (PV) On-disk partitioning format to be combined in a VG to a
common storage pool

Volume Group (VG) Grouping of one or more PVs to provide a combined
storage pool from which storage can be requested in the
form of LVs.

Logical Volume (LV) Logical partition format which can be accessed like a block
device to hold file systems and data.

LVM + dm-cache
(unencrypted)

NOTE: This partition scheme is tailored towards a desktop computer setup with enough RAM
and no SWAP (and therefore no hibernate/suspend-to-disk support).

CAUTION: This setup does NOT utilize LUKS disk encryption.

Nomenclature

First the available disks need to be determined. This can easily be achieved with fdisk :

To start the actual partitioning process start cfdisk and point it to the disk you wish to partition:

Partition the disk in the following way:

FS Type Size Mount Point Comment

vfat 1G /boot EFI System

LVM (remaining) Linux LVM

Partition the disk by starting cfdisk and pointing it to the disk for the origin device:

Partition the disk in the following way:

FS Type Size Mount Point Comment

LVM (all) Linux LVM

Preparing the cache device

fdisk -l

WARNING: Make sure to select your actually desired device!

cfdisk /dev/nvme0n1

Preparing the origin device

WARNING: Make sure to select your actually desired device!

cfdisk /dev/sda

Creating physical volumes, volume
group and logical volumes

To create physical volumes as the basis for the LVM setup, use pvcreate and point it to the
partitions you created in the two previous steps:

Continue by creating a volume group with vgcreate that spans both physical volumes you just
created:

Next, create logical volumes inside the volume group with lvcreate , using 100% of the available
space on the HDD and specifying the cache pool on the SSD:

Finally, link the cache pool to the origin device with lvconvert :

Format the partitions with the appropriate mkfs subcommand:

Mount the root Btrfs file system:

Next, create the subvolumes with the btrfs user space tools:

Unmount the root file system again:

pvcreate /dev/nvme0n1p2 # SSD
pvcreate /dev/sda1 # HDD

NOTE: vg0 is used as an example here. Use whatever you like.

vgcreate vg0 /dev/nvme0n1p2 /dev/sda1

lvcreate -l 100%FREE -n lv_root vg0 /dev/sda1
lvcreate --type cache-pool -n lv_cache -l 100%FREE vg0 /dev/nvme0n1p2

lvconvert --type cache --cachepool vg0/lv_cache vg0/lv_root

Formatting devices

mkfs.fat -F 32 /dev/nvme0n1p1 # EFI System Partition
mkfs.btrfs /dev/mapper/vg0-lv_root # Btrfs root file system

mount /dev/mapper/vg0-lv_root /mnt

btrfs subvolume create /mnt/@
btrfs subvolume create /mnt/@home

Mount the @ subvolume at /mnt :

Create directories for subsequent mount points:

Mount the remaining file systems:

umount -R /mnt

mount /dev/mapper/vg0-lv_root -o noatime,compress-force=zstd,space_cache=v2,subvol=@ /mnt

mkdir -p /mnt/{boot,home}

mount /dev/nvme0n1p1 /mnt/boot
mount /dev/mapper/vg0-lv_root -o noatime,compress-force=zstd,space_cache=v2,subvol=@home /mnt/home

LUKS (Linux Unified Key Setup) is the standard for Linux hard disk encryption. By providing a
standard on-disk-format, it does not only facilitate compatibility among distributions, but also
provides secure management of multiple user passwords. LUKS stores all necessary setup
information in the partition header, enabling to transport or migrate data seamlessly.

Management of LUKS encrypted devices is done via the cryptsetup utility.

Term Description

Physical Volume (PV) On-disk partitioning format to be combined in a VG to a
common storage pool

Volume Group (VG) Grouping of one or more PVs to provide a combined
storage pool from which storage can be requested in the
form of LVs.

Logical Volume (LV) Logical partition format which can be accessed like a block
device to hold file systems and data.

LVM on LUKS (encrypted,
Laptop)

Nomenclature

Partitioning Setup
NOTE: This partitioning scheme does NOT include an LVM cache device.

While it is technically possible to add an LVM cache device to this setup, it is not advised to
do so, as this will leak plain text contents of the unlocked LUKS container into the
cache, which can be read in a hex editor by opening the raw device file directly — entirely
defeating the purpose of encrypting the disk!

A LUKS on LVM setup is recommended instead.

https://gitlab.com/cryptsetup/cryptsetup
https://wiki.sebin-nyshkim.net/books/arch-linux/page/partitioning-luks-on-lvm

LVM on LUKS has the benefit of being able to encrypt an entire drive (useful for laptops with
encrypted swap for resume) while only needing to provide a single passphrase to unlock it entirely
for simplicity.

However, since the LVM container resides inside the LUKS container it cannot span multiple disks,
as it is confined by the boundaries by the parent LUKS container.

This guide assumes the following:

This is used on a laptop computer with resume capabilities (Swap partition)
There is only one drive: /dev/nvme0n1
The root file system will be btrfs, with subvolumes for / and /home

To tighten security, this setup assumes a unified kernel image and booting via EFISTUB,
with the ESP mounted at /efi . Extra steps will be necessary to make the machine
bootable.

1. List available disks

fdisk -l

2. Start partitionaing tool for primary disk (cfdisk is a little easier to use as it has a nice TUI)

WARNING: Make sure to select your actually desired device!

cfdisk /dev/nvme0n1

3. Partition with the following scheme

FS Type Size Mount Point Comment

vfat 1G /efi EFI System

LUKS (remaining) Linux file system

1. Create the LUKS container and enter a passphrase

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to
access the data inside the container anymore!

cryptsetup luksFormat /dev/nvme0n1p2

Preparing the drive

Creating the LUKS container

https://wiki.archlinux.org/title/Systemd-boot#Preparing_a_unified_kernel_image
https://wiki.archlinux.org/title/EFISTUB
/books/arch-linux/page/boot-loader
https://wiki.sebin-nyshkim.net/books/arch-linux/page/secure-boot

2. Open the newly created LUKS container

NOTE: cryptlvm is used as an example here. Use whatever you like.

cryptsetup open /dev/nvme0n1p2 cryptlvm

1. Create an LVM physical volume inside LUKS container

pvcreate /dev/mapper/cryptlvm

2. Create the volume group:

vgcreate vg0 /dev/mapper/cryptlvm

3. Create the logical volumes

NOTE: When using resume, make lv_swap as large as RAM. In this example the
machine has 16 GB of RAM.

lvcreate -L 16G -n lv_swap vg0 # Swap as big as RAM (16 GB)
lvcreate -l 100%FREE -n lv_root vg0 # Root file system

1. Create partitions

mkfs.fat -F 32 /dev/nvme0n1p1 # EFI System Partition
mkfs.btrfs /dev/mapper/vg0-lv_root # Btrfs root volume
mkswap /dev/mapper/vg0-lv_swap # Swap space

2. Create Btrfs subvolumes

First, mount the root file system
mount /dev/mapper/vg0-lv_root /mnt

Create subvolumes
btrfs subvolume create /mnt/@
btrfs subvolume create /mnt/@home

3. Mount partitions

Creating LVM inside the LUKS container

Formatting devices

Unmount the root file system
umount -R /mnt

Mount the @ subvolume
mount /dev/mapper/vg0-lv_root -o noatime,compress-force=zstd,space_cache=v2,subvol=@ /mnt

Create mountpoints
mkdir -p /mnt/{efi,home}

Mount the remaining partitions/subvolumes
mount /dev/nvme0n1p1 /mnt/efi
mount /dev/mapper/vg0-lv_root -o noatime,compress-force=zstd,space_cache=v2,subvol=@home
/mnt/home

Activate swap
swapon /dev/mapper/vg0-lv_swap

LUKS (Linux Unified Key Setup) is the standard for Linux hard disk encryption. By providing a
standard on-disk-format, it does not only facilitate compatibility among distributions, but also
provides secure management of multiple user passwords. LUKS stores all necessary setup
information in the partition header, enabling to transport or migrate data seamlessly.

Management of LUKS encrypted devices is done via the cryptsetup utility.

Term Description

Physical Volume (PV) On-disk partitioning format to be combined in a VG to a
common storage pool

Volume Group (VG) Grouping of one or more PVs to provide a combined
storage pool from which storage can be requested in the
form of LVs.

Logical Volume (LV) Logical partition format which can be accessed like a block
device to hold file systems and data.

Cache device Fast storage used for caching reads/writes to slow storage

Origin device Slow primary storage holding the actual data

LUKS on LVM has the benefit of a LUKS container being able to span multiple disks, thanks to the
machanisms of the underlying LVM. This, however, comes with the downside that if you want to
have multiple volumes (e.g. for your root volume and a separate home volume or encrypted SWAP)
you will have to take extra steps to unlock these volumes during the boot process.

LUKS on LVM (encrypted,
cached, Desktop)

Nomenclature

Partitioning Setup

NOTE: If you want to utilize LVM cache this is the desired partioning scheme to use, as the
encrypted LUKS container will reside inside an LVM LV and the LVM caching mechanism will
cache the LV instead of the unlocked LUKS container, thus not leaking any secrets into the

https://gitlab.com/cryptsetup/cryptsetup

This guide assumes the following:

This is used on a desktop computer without the need to resume (no SWAP partition)
There are multiple drives: /dev/nvme0n1 (SSD) and /dev/sda (HDD)
The HDD will be cached by the SSD
The root file system will be btrfs, with subvolumes for / and /home

To tighten security, this setup assumes a unified kernel image and booting via EFISTUB,
with the ESP mounted at /efi . Extra steps will be necessary to make the machine
bootable.

Start by listing available disks:

Create a partition layout with cfdisk by pointing it to the first disk, e.g. /dev/nvme0n1 :

If cfdisk asks you about the partition table scheme to use, select gpt .

Create the following partition layout:

FS Type Size Mount Point Comment

vfat 1G /efi EFI System

LVM (remaining) Linux LVM

Start cfdisk for the second disk, e.g. /dev/sda :

Create the following partition layout:

FS Type Size Mount Point Comment

LVM (all) Linux LVM

cache.

Preparing partition layout

fdisk -l

ATTENTION: cfdisk expects a device file, not a partition.

cfdisk /dev/nvme0n1

cfdisk /dev/sda

https://wiki.archlinux.org/title/Systemd-boot#Preparing_a_unified_kernel_image
https://wiki.archlinux.org/title/EFISTUB
/books/arch-linux/page/boot-loader
https://wiki.sebin-nyshkim.net/books/arch-linux/page/secure-boot

Start by creating LVM PVs on the partitions we just laid out:

Next, create a VG spanning both PVs:

Create an LV inside vg0 , using 100% of the available space on the PV at /dev/sda1 and label it
lv_root :

Create an LV inside vg0 , using 100% of the available space on the PV at /dev/nvme0n1p2 and label
it lv_cache :

Finally, link both LVs together so that the LV on the HDD is being cached by the pool on the SSD:

Create the LUKS container inside the LV of the origin device:

Open the newly created LUKS container and supply the passphrase you just set:

Setting up LVM

pvcreate /dev/nvme0n1p2 # SSD
pvcreate /dev/sda1 # HDD

NOTE: vg0 is used as an example here. Name your VG whatever you like.

vgcreate vg0 /dev/nvme0n1p2 /dev/sda1

lvcreate -l 100%FREE -n lv_root vg0 /dev/sda1

lvcreate -l 100%FREE -n lv_cache --type cache-pool vg0 /dev/nvme0n1p2

lvconvert --type cache --cachepool vg0/lv_cache vg0/lv_root

Creating the LUKS container

WARNING: Do NOT forget your passphrase! In case of loss you won't be able to access the
data inside the container anymore!

cryptsetup luksFormat /dev/mapper/vg0-lv_root

NOTE: cryptroot is used as an example here. Use whatever you like.

Create file systems for the ESP and the root file system:

Mount the root btrfs file system and create the subvolumes:

Unmount the root btrfs file system:

Mount the @ subvolume:

Create mount points for /efi and /home :

Mount the remaining partitions and subvolumes:

cryptsetup open /dev/mapper/vg0-lv_root cryptroot

Formatting and mounting partitions

mkfs.fat -F 32 /dev/nvme0n1p1
mkfs.btrfs /dev/mapper/cryptroot

mount /dev/mapper/cryptroot /mnt

btrfs subvolume create /mnt/@
btrfs subvolume create /mnt/@home

umount -R /mnt

mount /dev/mapper/cryptroot -o noatime,compress-force=zstd,space_cache=v2,subvol=@ /mnt

mkdir -p /mnt/{efi,home}

mount /dev/nvme0n1p1 /mnt/efi
mount /dev/mapper/cryptroot -o noatime,compress-force=zstd,space_cache=v2,subvol=@home /mnt/home

