
Laying the foundation

Base System
Time Zone & Locale
Network
Root Password
sudo
zsh
Add User
AUR Helper
initramfs
zram
Secure Boot
Boot Loader

Installation

The Arch installation environment comes with reflector , a tool that generates mirror lists for
pacman . At boot time, reflector is executed once to include the most recently synced mirrors and
sorts them by download rate. This file will be copied to the installation destination later on.

reflector allows for a few filtering options:

Filter Description

--age n Only return mirrors that have synchronized in the last n
hours.

--country NAME Restrict mirrors to selected countries, e.g. France,Germany
(check available with --list-countries)

--fastest n Return the n fastest mirrors that meet the other criteria.
Do not use without filters!

--latest n Limit the list to the n most recently synchronized servers.

--score n Limit the list to the n servers with the highest score.

--number n Return at most n mirrors.

--protocol PROTO Restrict protocol used by mirrors. Either https , http ,
ftp or a combination (comma-separated)

To have reflector generate a list of mirrors from Germany, which synced in the past 12 hours and
use HTTPS for transfer:

By default, pacman downloads packages one-by-one. If you have a fast internet connection, you can
configure pacman to download packages in parallel, which can speed up installation significantly.

Open /etc/pacman.conf , uncomment the line #ParallelDownloads = 5 and set it to a value of your
preference:

Base System

Setting up mirrors

reflector --country Germany --age 12 --protocol https --save /etc/pacman.d/mirrorlist

Parallel downloads

Alternatively, replace the settings directly with sed (e.g. setting 10 parallel downloads at a time):

The absolute minimum set of packages required to install Arch Linux onto a machine is as follows:

However, this selection lacks the tooling required for file systems, RAID, LVM, special firmware for
devices not included with linux-firmware , networking software, a text editor or packages
necessary to access documentation. It also lacks CPU microcode packages with stability and
security updates.

The following table contains additional packages you most likely want to append to the above
pacstrap command:

Package Description

base Absolute essentials (required)

linux Vanilla Linux kernel and modules, with a few patches
applied (required)

linux-hardened A security-focused Linux kernel applying a set of
hardening patches to mitigate kernel and userspace
exploits

linux-lts Long-term support (LTS) Linux kernel and modules

linux-zen Result of a collaborative effort of kernel hackers to provide
the best Linux kernel possible for everyday systems

linux-firmware Device firmware files, e.g. WiFi (required)

...

Misc options

#UseSyslog

#Color

#NoProgressBar

CheckSpace

#VerbosePkgLists

ParallelDownloads = 10

#DisableSandbox

...

sed -i "/etc/pacman.conf" -e "s|^#ParallelDownloads.*|&\nParallelDownloads = 10|"

Installing base packages

pacstrap /mnt base linux linux-firmware

Package Description

intel-ucode Intel CPU microcode (required, if on Intel)

amd-ucode AMD CPU microcode (required, if on AMD)

btrfs-progs Userspace tools to manage btrfs filesystems

dosfstools Userspace tools to manage FAT filesystems

exfatprogs Userspace tools to manage exFAT filesystems

f2fs-tools Userspace tools to manage F2FS filesystems

e2fsprogs Userspace tools to manage ext2/3/4 filesystems

jfsutils Userspace tools to manage JFS filesystems

nilfs-utils Userspace tools to manage NILFS2 filesystems

ntfs-3g Userspace tools to manage NTFS filesystems

udftools Userspace tools to manage UDF filesystems

xfsprogs Userspace tools to manage XFS filesystems

lvm2 Userspace tools for Logical Volume Management

cryptsetup Userspace tools for encrypting storage devices (LUKS)

networkmanager Comprehensive network management and configuration
suite

nano Console text editor

man Read documentation (manuals)

sudo Execute commands with elevated privileges

A desireable selection of packages for a base system with an AMD CPU, btrfs filesystem, UEFI ESP,
LUKS disk encryption, a basic text editor, a network manager and tools for system maintenance as
regular user would look something like this:

Generate the fstab containing information about which storage devices should be mounted at
boot:

CAUTION: If you have an AMD CPU, include the amd-ucode package. If you have an Intel
CPU, include the intel-ucode package!

ATTENTION: Include the cryptsetup package if you've encrypted your disks!

pacstrap /mnt base linux linux-firmware amd-ucode btrfs-progs dosfstools cryptsetup nano

networkmanager sudo

Switch into the newly installed system with arch-chroot and continue setting it up:

Generate fstab referencing UUIDs of devices/partitions

genfstab -U /mnt >> /mnt/etc/fstab

arch-chroot /mnt

Create a symbolic link to your local time zone at /etc/localtime and sync the time with the local
hardware clock:

Edit /etc/locale.gen and uncomment en_US.UTF-8 UTF-8 and other desired locales (prefer UTF-8):

Generate the locales by running:

Set which locales and keyboard layout the system should use for messages and documentation (
man pages):

Time Zone & Locale

Time zone

ln -sf /usr/share/zoneinfo/Europe/Berlin /etc/localtime

hwclock --systohc

Localization

nano /etc/locale.gen

NOTE: You can search in nano using CTRL + W.

locale-gen

echo "LANG=de_DE.UTF-8" > /etc/locale.conf

echo "KEYMAP=de-latin1" > /etc/vconsole.conf

Set up the default host name of the machine as well as localhost :

If your machine has Wi-Fi it is advisable to set the region for wireless radio waves to comply with
local regulations. Not doing this will limit you to 2,4 GHz Wi-Fi.

To set your region temporarily:

To set it permanently, install wireless-regdb and uncomment the line with your country in the file
/etc/conf.d/wireless-regdom .

Previously we installed NetworkManager as our default network mangaging software. GNOME and
KDE have out of the box support for managing network connections in their settings dialogs in a
graphical manner. Both rely on NetworkManager.

Enable NetworkManager to start at boot:

Network

NOTE: sebin-desktop is used as an example here. Set $HOSTNAME to whatever you like.

Define an environment variable containing the desired hostname

export HOSTNAME='sebin-desktop'

Set the hostname of the machine

echo "$HOSTNAME" > /etc/hostname

Set localhost to resolve to the machine's loopback address

echo "127.0.0.1	localhost" >> /etc/hosts

echo "::1		localhost" >> /etc/hosts

echo "127.0.1.1	$HOSTNAME.localdomain	$HOSTNAME" >> /etc/hosts

Set wireless region

pacman -S iw

iw reg set DE # Set region to e.g. Germany

Network manager

By default NetworkManager uses wpa_supplicant for managing Wi-Fi connections.

iwd (iNet wireless daemon) is a wireless daemon for Linux written by Intel. The core goal of the
project is to optimize resource utilization by not depending on any external libraries and instead
utilizing features provided by the Linux Kernel to the maximum extent possible.

To enable the experimental iwd backend, first install iwd and then create the following
configuration file:

With the following contents:

systemd-resolved is a systemd service that provides network name resolution to local applications
via a D-Bus interface, the resolve NSS service, and a local DNS stub listener on 127.0.0.53 .

Benefits of using systemd-resolved include:

resolvectl as the primary single command for interfacing with the network name resolver
service
A system-wide DNS cache for speeding up subsequent name resolution requests
Split DNS when using VPNs, which can help in preventing DNS leaks when connecting to
multiple VPNs (See Fedora Wiki for a detailed explenation why this is important)
Integrated DNSSEC capabilities to verify the authenticity and integrity of name resolution
requests, e.g. to prevent cache poisoning/DNS hijacking
DNS over TLS for further securing name resolution requests by encrypting them,
improving privacy (not to be confused with DNS over HTTPS)

To use systemd-resolved enable the respective unit:

systemctl enable NetworkManager

Using iwd as the Wi-Fi backend (optional)

mkdir /etc/NetworkManager/conf.d

nano /etc/NetworkManager/conf.d/wifi_backend.conf

[device]

wifi.backend=iwd

systemd-resolved for DNS name
resolution

https://iwd.wiki.kernel.org/networkmanager
https://fedoraproject.org/wiki/Changes/systemd-resolved#Benefit_to_Fedora
https://en.wikipedia.org/wiki/DNS_hijacking

To provide domain name resolution for software that reads /etc/resolv.conf directly, such as web
browsers and GnuPG, systemd-resolved has four different modes for handling the file

stub: a symlink to the systemd-resolved managed file /run/systemd/resolve/stub-
resolv.conf containing only the stub resolver and search domains
static: a symlink to the static systemd-resolved owned file /usr/lib/systemd/resolv.conf
containing only the stub resolver, but no search domains
uplink: a symlink to the systemd-resolved managed file /run/systemd/resolve/resolv.conf
containing all upstream DNS servers known to systemd-resolved , effectively bypassing the
stub resolver
foreign: an external tool managing system-wide DNS entries for systemd-resolved to
derive its DNS configuration from

The recommended mode is stub.

This propagates the systemd-resolved managed configuration to all clients. To use it, replace
/etc/resolv.conf with a symbolic link to it:

When set up this way, NetworkManager automatically picks up systemd-resolved for network name
resolution.

If systemd-resolved does not receive DNS server addresses from the network manager and no DNS
servers are configured manually, then systemd-resolved falls back to a hardcoded list of DNS
servers.

systemctl enable systemd-resolved

ATTENTION: A few notes about setting this up:

Failure to properly configure /etc/resolv.conf will result in broken DNS resolution!
Attempting to symlink /etc/resolv.conf whilst inside arch-chroot will not be
possible, since the file is bind-mounted from the archiso live system. In this case,
create the symlink from outside arch-chroot :

ln -sf ../run/systemd/resolve/stub-resolv.conf /mnt/etc/resolv.conf

Some DHCP and VPN clients use the resolvconf program to set name server and
search domains (see this list). For these, you also need to install the systemd-
resolvconf package to provide a /usr/bin/resolvconf symlink.

ln -sf ../run/systemd/resolve/stub-resolv.conf /etc/resolv.conf

Fallback DNS servers

https://wiki.archlinux.org/title/Openresolv#Users

The fallback order is:

1. Cloudflare
2. Quad9 (without filtering and without DNSSEC)
3. Google

Fallback addresses can be manually set in a drop-in config file, e.g.
/etc/systemd/resolved.conf.d/fallback_dns.conf :

To disable the fallback DNS functionality set the FallbackDNS option without specifying any
addresses:

DNSSEC is an extension to the DNS system that verifies DNS entries via authentification and data
integrity checks to prevent DNS cache poisoning, but does not encrypt DNS queries. For actually
encrypting your DNS traffic, see the section below.

systemd-resolved can be configured to use DNSSEC for validation of DNS requests. It can be
configured in three modes:

Setting Description

allow-downgrade Validate DNSSEC only if the upstream DNS server supports
it

true Always validate DNSSEC, breaking DNS resolution if the
server does not support it

false Disable DNSSEC validation entirely

ATTENTION: Depending on your use-case, you might not want to route all your DNS traffic
through the pre-determined fallback servers for privacy reasons. Do your own research on
fallback DNS servers that you want to trust.

[Resolve]

FallbackDNS=127.0.0.1 ::1

[Resolve]

FallbackDNS=

DNSSEC

WARNING: DNSSEC support in systemd-resolved is considered experimental and incomplete
.

https://github.com/systemd/systemd/issues/25676#issuecomment-1634810897

Set up DNSSEC in a drop-in config file, e.g. /etc/systemd/resolved.conf.d/dnssec.conf :

DNS over TLS (DoT) is a security protocol for encrypting DNS queries and responses via Transport
Layer Security (TLS), thereby increasing privacy and security by preventing eavesdropping on DNS
requests by internet service providers and malicious actors in man-in-the-middle attack scenarios.

DNS over TLS in systemd-resolved is disabled by default. To enable validation of your DNS
provider's server certificate, include their hostname in the DNS setting in the format
ip_address#hostname and set DNSOverTLS to one of three modes:

Setting Description

opportunistic Attempt DNS over TLS when possible and fall back to
unencrypted DNS if the server does not support it

true Always use DNS over TLS, breaking resolution if the server
does not support it

false Disable DNS over TLS entirely

To enable DNS over TLS system-wide for all connections, add your DNS over TLS capable servers in
a drop-in config file, e.g. /etc/systemd/resolved.conf.d/dns_over_tls.conf :

Alternatively, you can use drop-in configuration files for NetworkManager to instruct it to use DNS
over TLS per connection. You can save this as a drop-in configuration file under

[Resolve]

DNSSEC=allow-downgrade

DNS over TLS

ATTENTION: When setting DNSOverTLS=opportunistic systemd-resolved will try to use DNS
over TLS and if the server does not support it fall back to regular DNS. Note, however, that
this opens you to "downgrade" attacks, where an attacker might be able to trigger a
downgrade to non-encrypted mode by synthesizinig a response that suggests DNS over TLS
was not supported.

WARNING: If setting DNSOverTLS=yes and the server provided in DNS= does not support DNS
over TLS all DNS requests will fail!

[Resolve]

DNS=9.9.9.9#dns.quad9.net 149.112.112.112#dns.quad9.net [2620:fe::fe]#dns.quad9.net

[2620:fe::9]#dns.quad9.net

DNSOverTLS=yes

/etc/NetworkManager/conf.d/dns_over_tls.conf to apply it to current and future connections or on a
per-connection basis to an existing connection profile under /etc/NetworkManager/system-
connections/*.nmconnection (as root).

There's three possible values:

2 = DNS over TLS always on (fail if DoT is unavailable)
1 = opportunistic DNS over TLS (downgrades to unencrypted DNS if DoT is unavailable)
0 = never use DNS over TLS

Add or modify

systemd-resolved is capable of working as a multicast DNS (mDNS) resolver and responder. The
resolver provides hostname resolution using a "hostname.local" naming scheme.

mDNS support in systemd-resolved is enabled by default. For a given connection, mDNS will only be
activated if both mDNS in systemd-resolved is enabled, and if the configuration for the currently
active network manager enables mDNS for the connection.

The MulticastDNS setting in systemd-resolved can be set to one of the following:

Setting Description

resolve Only enables resolution support, but responding is
disabled

true Enables full mDNS responder and resolver support

false Disables both mDNS responder and resolver

To enable mDNS for a connection managed by NetworkManager tell nmcli to modify an existing
connection:

[connection]

dns-over-tls=2

Multicast DNS

ATTENTION: If you plan on using systemd-resolved as mDNS resolver and responder
consider the following:

Some desktop environments have the avahi package as a dependency. To prevent
conflicts, disable or mask both avahi-daemon.service and avahi-daemon.socket
If you plan on using a firewall, make sure UDP port 5353 is open

https://en.wikipedia.org/wiki/Multicast_DNS

Avahi implements zero-configuration networking (zeroconf), allowing for multicast DNS/DNS-SD
service discovery. This enables programs to publish and discover services and hosts running on a
local network, e.g. network file sharing servers, remote audio devices, network printers, etc.

Some desktop environments pull in the avahi package as a dependency. It enables their file
manager to scan the network for services and make them easily accessible.

Avahi provides local hostname resolution using a "hostname.local" naming scheme. To use it,
install the avahi and nss-mdns package and enable Avahi:

Then, edit the file /etc/nsswitch.conf and change the hosts line to include mdns_minimal
[NOTFOUND=return] before resolve and dns :

nmcli connection modify CONNECTION_NAME connection.mdns yes

TIP: The default for all NetworkManager connections can be set by creating a configuration
file in /etc/NetworkManager/conf.d/ and setting connection.mdns=2 (equivalent to "yes") in the
[connection] section.

[connection]

connection.mdns=2

Avahi

ATTENTION: If you plan on using avahi as mDNS resolver and responder consider the
following:

You need to disable mDNS in systemd-resolved . You can do so in a drop-in config
file, e.g. /etc/systemd/resolved.conf.d/mdns.conf :

[Resolve]

MulticastDNS=false

If you plan on using a firewall, make sure UDP port 5353 is open

pacman -S avahi nss-mdns

systemctl enable avahi-daemon

To discover services running in your local network:

To query a specific host for the services it advertises:

Avahi also includes the avahi-discover graphical utility that lists the various services on your
network.

hosts: mymachines mdns_minimal [NOTFOUND=return] resolve [!UNAVAIL=return] files myhostname

dns

avahi-browse --all --ignore-local --resolve --terminate

avahi-resolve-host-name hostname.local

Set the password for the root user:

This password schould differ from the regular user password for security reasons.

In the case of system recovery operations the root user comes into play, e.g. when the kernel fails
to mount the root file system or system maintenance via chroot is needed.

Root Password

passwd

sudo is the standard tool for gaining temporary system administrator privileges on Linux to
perform administrative tasks. This eliminates the need to change the current user to root to
perform these tasks.

To allow regular users to execute commands with elevated privileges, the configuration for sudo
needs to be modified to allow this.

sudo supports configuration drop-in files in /etc/sudoers.d/ . Using these makes it easy to
modularize the configuration and remove offending files, if something goes wrong.

Create a new drop-in file at:

The contents of the drop-in file are as follows:

Save and exit.

Now every user who is in the wheel user group is allowed to run any command as root .

sudo

TIP: File names starting with . or ~ will get ignored. Use this to turn off certain
configuration settings if you need to.

WARNING: Drop-in files are just as fragile as /etc/sudoers ! It is therefore strongly advised
to always use visudo when creating or editing sudo config files, as it will check for syntax
errors. Failing to do so will risk rendering sudo inoperable!

EDITOR=nano visudo /etc/sudoers.d/01_wheel

Allow members of group wheel to execute any command

%wheel ALL=(ALL:ALL) ALL

zsh is a modern shell with lots of customizability and features. Install the following packages:

Package Description

zsh-autosuggestions Suggests commands as you type based on history and
completions

zsh-completions Additional completion definitions for zsh

zsh-history-substring-search Type any part of any command from history and cycle
through matches

zsh-syntax-highlighting Highlights commands whilst they are typed, helping in
reviewing commands before running them

zsh

pacman -S zsh zsh-autosuggestions zsh-completions zsh-history-substring-search zsh-syntax-

highlighting

It is advised to add a regular user account for day to day usage.

Add a new user, create a home directory, add them to the wheel group, set their default shell to
zsh:

Set a password for the new user:

Add User

useradd -mG wheel -s /bin/zsh sebin

passwd sebin

An AUR helper is a tool that automates the process of installing packages from the Arch User
Repository.

It does this by automating the following tasks:

search the AUR for published packages
resolve dependencies for AUR packages
retrieval and build of AUR packages
show user comments
submission of AUR packages

AUR packages are distributed in the form of PKGBUILD s that contain information on how the
package needs to be built, what dependencies is needs and all the usual metadata associated with
every other Arch Linux package.

Arch Wiki has a list of AUR helpers with comparison tables

The installation procedure for any AUR helper is largely the same, as they are all published on the
AUR itself.

Building packages from the AUR manually will at minimum require the base-devel and git
packages:

Change to a temporary directory, clone the AUR helper of your choice with git , change into the
newly created directory and call makepkg to build and install it, e.g. yay :

AUR Helper

Installation

pacman -S base-devel git

ATTENTION: If you'rere currently logged in as the root user, you need to switch to a
regular user profile with su username, as makepkg will not allow you to run it as root .

cd /tmp

git clone https://aur.archlinux.org/yay

cd yay

makepkg -si

https://aur.archlinux.org/
https://aur.archlinux.org/
https://wiki.archlinux.org/title/AUR_helpers

makepkg -si will prompt you to install any missing dependencies for your chosen AUR helper, i.e.
go for yay , rust for paru , etc. and call pacman to install the helper for you after the build has
finished.

makepkg can be configured to make better use of available system resources, improving build times
and efficiency.

One of these optimizations is instructing makepkg to pass specific options to compilers. You can
either edit the main configuration file of makepkg at /etc/makepkg.conf or supply a drop-in config
file in /etc/makepkg.conf.d/*.conf — the latter is recommended in case building starts to act
strangely and you want to quickly be able to revert changes by deleting drop-in config files.

By default, makepkg is configured to produce generic builds of software packages. Since makepkg
will mostly be used to build packages for your own personal machine, compiler options can be
tweaked to produce optimized builds for the machine they're getting built on.

For example, create a drop-in config file /etc/makepkg.conf.d/cflags.conf with the following
contents:

This will cause GCC to automatically detect and enable safe architecture-specific optimizations.

The same thing can be applied to the Rust compiler. There is already a drop-in config file at
/etc/makepkg.conf.d/rust.conf that can be edited:

The opt-level parameter can be set to different values ranging in different levels of optimizations
that will have an impact on build time. See the Rust docs for details.

Additionally, the make build system can also be optimized with the MAKEFLAGS variable. One such
optimization is to increase the number of jobs that can run simultaneously.

Create a drop-in config file /etc/makepkg.conf.d/make.conf with the following contents:

Configuration

Optimizing builds

CFLAGS="-march=native -O2 -pipe -fno-plt -fexceptions \

 -Wp,-D_FORTIFY_SOURCE=3 -Wformat -Werror=format-security \

 -fstack-clash-protection -fcf-protection \

 -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer"

RUSTFLAGS="-C opt-level=2 -C target-cpu=native"

https://doc.rust-lang.org/rustc/codegen-options/index.html#opt-level

This will prompt make to utilize the maximum number of CPU cores to run build jobs.

By default, makepkg is configured to also generate debug symbol packages. This affects all AUR
helpers. To turn this behavior off, modify the OPTIONS array by either removing the debug option or
disabling it with a ! in front of it:

mold is a drop-in replacement for ld / lld linkers, which claims to be significantly faster.

Install mold from the repositories:

To use mold , append -fuse-ld=mold to LDFLAGS :

This also needs to be passed to RUSTFLAGS :

By default, makepkg will compress built packages with zstd. This is controlled by the PKGEXT
variable. The compression algorithm used is inferred from the archive extension. To speed up the
packaging process, you might consider turning off the compression at the expense of increased
storage usage in the package cache:

MAKEFLAGS="--jobs=$(nproc)"

ATTENTION: Some PKGBUILD s specifically override this with -j1 , because of race conditions
in certain versions or simply because it is not supported in the first place. If a package fails
to build you should report this to the package maintainer.

Prevent build of -debug packages

OPTIONS=(strip docs !libtool !staticlibs emptydirs zipman purge !debug lto)

Using the mold linker

pacman -S mold

LDFLAGS="-Wl,-O1 -Wl,--sort-common -Wl,--as-needed -Wl,-z,relro -Wl,-z,now \

 -Wl,-z,pack-relative-relocs -fuse-ld=mold"

RUSTFLAGS="-C opt-level=2 -C target-cpu=native -C link-arg=-fuse-ld=mold"

Compression options

https://en.wikipedia.org/wiki/Race_condition

If you need to conserve space, consider keeping compression enabled, but increasing the number
of utilized cores by telling zstd to count logical cores instead of physical ones with --auto-
threads=logical :

You can also increase the level of compression applied at the expense of longer packaging time,
ranging from 1 (weakest) to 19 (strongest), default is 3:

Or use the LZ4 algorithm, which is optimized for speed:

You can pass makepkg a different directory for building packages. Since building causes a lot of
rapid small file access, performance could be improved by moving this process to a tmpfs location
that is held entirely in RAM. The variable BUILDDIR can be used to instruct makepkg to build
packages in another location:

Since /tmp is such a tmpfs files in this directory are held in RAM. Building packages completely in
RAM can therefore speed up data access and help preserve the durability of flash-based storage
mediums like SSDs.

PKGEXT='.pkg.tar'

COMPRESSZST=(zstd -c -T0 --auto-threads=logical -)

COMPRESSZST=(zstd -c -T0 -19 --auto-threads=logical -)

PKGEXT='.pkg.tar.lz4'

Build entirely in RAM

BUILDDIR=/tmp/makepkg

The initramfs contains all the necessary programs and config files needed to bring up the machine,
mount the root file system and hand off the rest of the boot process to the installed system. It can
be further customized with additional modules, binaries, files and hooks for special use cases and
hardware.

Every kernel in Arch Linux comes with its own .preset file stored in /etc/mkinitcpio.d/ with
configuration presets for mkinitcpio . Pacman hooks build a new image after every kernel upgrade
or installation of a new kernel.

To manually generate a Linux kernel image issue the following command:

This will generate a new kernel image with the settings of the preset file
/etc/mkinitcpio.d/linux.preset .

To generate kernel images with every preset available, pass the -P argument:

To customize your initramfs, place drop-in configuration files into /etc/mkinitcpio.conf.d/ . They
will override the settings in the main configuration file at /etc/mkinitcpio.conf .

An overview of the settings you can customize:

Setting Type Description

initramfs

Usage

Automated image generation

Manual image generation

mkinitcpio -p linux

mkinitcpio -P

Configuration

MODULES Array Kernel modules to be loaded before
any boot hooks are run.

BINARIES Array Additional binaries you want included
in the initramfs image.

FILES Array Additional files you want included in
the initramfs image.

HOOKS Array Hooks are scripts that execute in the
initial ramdisk.

COMPRESSION String Which tool to use for compressing the
image.

COMPRESSION_OPTIONS Array Extra arguments to pass to the
COMPRESSION tool.

The MODULES array is used to specify modules to load before anything else is done.

Here you can specify additional kernel modules needed in early userspace, e.g. file system
modules (ext2 , reiser4 , btrfs), keyboard drivers (usbhid , hid_apple , etc.), USB 3 hubs (
xhci_hcd) or "out-of-tree" modules which are not part of the Linux kernel (mainly NVIDIA GPU
drivers). It is also needed to add modules for hardware devices that are not always connected but
you would like to be operational from the very start if they are connected during boot.

WARNING: Do not use the COMPRESSION_OPTIONS setting, unless you know exactly what you
are doing. Misuse can produce unbootable images!

MODULES

HINT: If you don't know the name of the driver of a device, lshw can tell you what hardware
uses which driver, e.g.:

*-usb:2

 description: USB controller

 product: Tiger Lake-LP USB 3.2 Gen 2x1 xHCI Host Controller

 vendor: Intel Corporation

 physical id: 14

 bus info: pci@0000:00:14.0

 version: 20

 width: 64 bits

 clock: 33MHz

 capabilities: xhci bus_master cap_list

 -> configuration: driver=xhci_hcd latency=0

Example of a MODULES array that adds two modules to the generated image needed for keyboard
input, if the keyboard is connected to a USB 3 hub, e.g. a docking station:

The BINARIES array holds the name of extra executables needed to boot the system. It can also be
used to replace binaries provided by HOOKS . The executable names are sourced from the PATH
evironment variable, associated libraries are added as well.

Example of a BINARIES array that adds the kexec binary:

This option usually only needs to be set for special use cases, e.g. when there's a binary you need
included that is not already part of a member in the HOOKS array.

The FILES array holds the full path to arbitrary files for inclusion in the image.

The second to last line starting with configuration shows the driver being used.

 resources: iomemory:600-5ff irq:163 memory:603f260000-603f26ffff

MODULES=(xhci_hcd usbhid)

CAUTION: Keep in mind that adding to the initramfs increases the size of the resulting
image on disk. Unless you have created your boot partition (more specifically the EFI System
partition at either /efi , /boot or /boot/efi) with generous space, you should limit yourself
to modules strictly needed for your system. The autodetect hook tries to detect all currently
loaded modules of the running system to determine the needed modules to include by
default. Only include additional modules if something doesn't work as expected.

ATTENTION: If you use an NVIDIA graphics card, the following modules are required in the
MODULES array for early KMS:

MODULES=(nvidia nvidia_modeset nvidia_uvm nvidia_drm)

BINARIES

BINARIES=(kexec)

FILES

Example of a module configuration file to be included in the image, containting the names of
modules to auto-load and optional module parameters:

This option usually only needs to be set for special use cases.

The HOOKS array is the most important setting in the file. Hooks are small scripts which describe
what will be added to the image. Hooks are referred to by their name, and executed in the order
they are listed in the HOOKS array.

The default HOOKS line in /etc/mkinitcpio.conf is as follows:

This creates a basic image suitable for most single disk systems.

A quick overview of the hooks and their meaning:

Hook Description

base Sets up all initial directories and installs base utilities and
libraries.

udev Adds the udev device manager to scan and set up devices.
Recommended for simple boot process.

autodetect Trims hooks after that come after to only include modules
that are needed for the current system. Keeps image slim.

microcode Includes CPU microcode updates in the image.

modconf Includes module configuration files from /etc/modprobe.d/
and /usr/lib/modprobe.d/ .

FILES=(/etc/modprobe.d/modprobe.conf)

HOOKS

HINT: For a full list of availble hooks run:

See the help text for a hook with:

mkinitcpio -L

mkinitcpio -H hook_name

HOOKS=(base udev autodetect microcode modconf kms keyboard keymap consolefont block

filesystems fsck)

Hook Description

kms Adds modules to bring up graphics cards as early as
possible in the boot process.

keyboard Adds modules for keyboards. Required for keyboard input
in early userspace.

keymap Adds the specified keymap(s) from /etc/vconsole.conf .

consolefont Adds the specified console font from /etc/vconsole.conf .

block Adds block device modules needed to bring up different
kinds of storage devices.

filesystems Adds file system modules. Required unless file system
modules are specified in MODULES .

fsck Adds tools for checking file systems before they are
mounted. Strongly recommended!

By default, mkinitcpio will generate a busybox-based initramfs. It starts an init script that scans
the filesystem of the initramfs for scripts to execute and bring up the system and hand over the
remaining boot process to systemd once the root file system is mounted. This is fine for most use-
cases.

For special cases some additional hooks may be required for busybox to bring up the machine
properly:

Hook Description

usr Needed for when you have /usr on a separate partition

resume Needed for suspend-to-disk (hibernation) support

btrfs Needed for btrfs file systems that span multiple drives,
needs the btrfs-progs package installed

net Needed for booting from a network drive, needs the
mkinitcpio-nfs-utils package installed

dmraid Needed for fakeRAID (BIOS RAID) root devices, needs the
dmraid package installed

mdadm_udev Needed for assembling RAID arrays via udev (software
RAID), needs the mdadm package installed

encrypt Needed for booting from an encrypted file system, needs
the cryptsetup package installed

lvm2 Needed for booting a system that is on LVM, needs the
lvm2 package installed

One such special case is encryption, which would result in a HOOKS array that looks like this:

busybox

If you wish, you can also make systemd bring the whole system up start to finish. In this case
bootup will be handled by systemd unit files instead of scripts.

The benefit of this is faster boot times and some additional features not available to a busybox-
based intiramfs, e.g. unlocking LUKS encrypted file systems with a TPM or FIDO2 token and
automatic detection and mounting of partitions with the appropriate GUID Partition Table (GPT)
UUIDs (see: Discoverable Partition Specification).

To instruct mkinitcpio to build a systemd-based initramfs:

replace the udev hook with the systemd hook
replace the keymap and consolefont hooks with the sd-vconsole hook

The resulting HOOKS array should look something like this:

For special cases some additional hooks may be required for systemd to bring up the machine
properly:

Hook Description

mdadm_udev Needed for assembling RAID arrays via udev (software
RAID), needs the mdadm package installed

sd-encrypt Needed for booting from an encrypted file system, needs
the cryptsetup package installed

lvm2 Needed for booting a system that is on LVM, needs the
lvm2 package installed

One such special case is encryption, which would result in a HOOKS array that looks like this:

ATTENTION: The order in which hooks are placed in the array is important!

HOOKS=(base udev autodetect microcode modconf kms keyboard keymap consolefont block encrypt

filesystems fsck)

ATTENTION: In some cases it might be necessary to place the keyboard hook before the
autodetect hook to be able to enter the passphrase to unlock the encrypted file systems,
e.g. when using different keyboards requiring a different module from the one in use at the
time of building the initramfs.

systemd

HOOKS=(base systemd autodetect microcode modconf kms keyboard sd-vconsole block filesystems

fsck)

https://uapi-group.org/specifications/specs/discoverable_partitions_specification/

The COMPRESSION option instructs mkinitcpio to compress the resulting images to save on space on
the EFI System Partition or /boot partition. This can be especially important if you include a lot of
modules and hooks and the size of the image grows.

Compressing the initramfs is a tradeoff between:

time it takes to compress the image
space saved
time it takes the kernel to decompress the image during boot

Which one you choose is something you have to decide on the constraints you're working with
(slow/fast CPU, available cores, RAM usage, disk space), but generally speaking the default zstd
compression strikes a good balance.

Algorithm Description

cat Uncompressed

zstd Best tradeoff between de-/compression time and image
size (default)

gzip Balanced between speed and size, acceptable
performance

bzip2 Rarely used, decent compression, resource conservative

lzma Very small size, slow to compress

xz Smallest size at longer compression time, RAM intensive
compression

lzop Slightly better compression than lz4, still fast to
decompress

lz4 Fast decompression, slow compression, "largest"
compressed output

ATTENTION: The order in which hooks are placed in the array is important!

HOOKS=(base systemd autodetect microcode modconf kms keyboard sd-vconsole block sd-encrypt

filesystems fsck)

ATTENTION: In some cases it might be necessary to place the keyboard hook before the
autodetect hook to be able to enter the passphrase to unlock the encrypted file systems,
e.g. when using different keyboards requiring a different module from the one in use at the
time of building the initramfs.

COMPRESSION

The COMPRESSION_OPTIONS setting allows you to pass additional parameters for the compression tool.
Available parameters depend on the algorithm chosen for the COMPRESSION option. Refer to the
tool's manual for available options. If left empty mkinitcpio will make sure it always produces a
working image.

NOTE: See this article for a comprehensive comparison between compression algorithms.

COMPRESSION_OPTIONS

WARNING: Misuse of this option may lead to an unbootable system if the kernel is unable
to unpack the resultant archive. Do not set this option unless you're absolutely sure that
you have to!

https://web.archive.org/web/20240212214845/https://linuxreviews.org/Comparison_of_Compression_Algorithms

The zram kernel module provides a compressed block device in RAM. If you use it as swap device,
the RAM can hold much more information but uses more CPU. Still, it is much quicker than
swapping to a hard drive. If a system often falls back to swap, this could improve responsiveness.
Using zram is also a good way to reduce disk read/write cycles due to swap on SSDs.

Install the zram-generator package and copy the example configuration:

Edit the copy of the example configuration to your liking. Comments explain what each setting
does.

zram

pacman -S zram-generator

cp /usr/share/doc/zram-generator/zram-generator.conf.example /etc/systemd/zram-generator.conf

Secure Boot is a security feature found in the UEFI standard, designed to add a layer of protection
to the pre-boot process: by maintaining a cryptographically signed list of binaries authorized or
forbidden to run at boot, it helps in improving the confidence that the machine core boot
components (boot manager, kernel, initramfs) have not been tampered with.

To determine the current state of Secure Boot execute:

The output looks something like this:

In order to proceed you need to set your firmware's Secure Boot mode into "setup" mode. This can
usually be achieved by wiping the key store of the firmware. Refer to your mainboard's user
manual on how to do this.

For the most straight-forward Secure Boot toolchain install sbctl :

Secure Boot

ATTENTION: When using Secure Boot it's imperative to use it with disk encryption. If the
storage device that stores the keys is not encrypted, anybody can read the keys and use
them to sign bootable images, thereby defeating the purpose of using Secure Boot at all.
Therefore, this guide will assume disk encryption is being used.

Preparations

bootctl status

System:

 Firmware: UEFI 2.70 (American Megatrends 5.17)

 Firmware Arch: x64

 Secure Boot: enabled (user)

 TPM2 Support: yes

 Measured UKI: yes

 Boot into FW: supported

...

Installation

It tremendously simplifies generating Secure Boot keys, loading keys into firmware and signing
kernel images.

Secure Boot implementations use these keys:

Key Type Description

Platform Key (PK) Top-level key

Key Exchange Key (KEK) Keys used to sign Signatures Database and Forbidden
Signatures Database updates

Signature Database (db) Contains keys and/or hashes of allowed EFI binaries

Forbidden Signatures Database (dbx) Contains keys and/or hashes of denylisted EFI binaries

To generate new keys and store them under /var/lib/sbctl/keys :

A unified kernel image (UKI) combines an EFI stub image, CPU microcode, kernel command line and
an initramfs into a single file that can be read and executed by the machine's UEFI firmware. It also
makes it easier to sign for secure boot as there will be only a single file to sign.

Starting with v31, mkinitcpio is able to create UKIs out-of-the-box. The maintainers of sbctl also
recommend using the system's initramfs generation tool instead of sbctl bundle . Additionally,
sbctl comes with mkinitcpio hooks that sign kernel images automatically when they are
generated during a rebuild.

Starting with v39, mkinitcpio will use systemd-ukify if it is installed. This is the preferred way of
generating UKIs. As systemd-ukify is not part of the systemd package, you'll have to install it
manually:

pacman -S sbctl

Generating keys

SEE ALSO: The Meaning of all the UEFI Keys

sbctl create-keys

Unified Kernel Image

pacman -S systemd-ukify

https://blog.hansenpartnership.com/the-meaning-of-all-the-uefi-keys/

To make mkinitcpio generate UKIs, edit the appropriate *.preset file for your kernel in
/etc/mkinitcpio.d/ :

comment out the default_image and fallback_image lines (as they won't be needed)
uncomment the default_uki and fallback_uki lines (prompts mkinitcpio to switch to UKI
generation)
point the file path to somewhere on your EFI System Partition (e.g. /efi)

A *.preset file edited for UKI generation could look something like this:

NOTE: mkinitcpio will automatically source command line parameters from files in
/etc/cmdline.d/*.conf or a complete single command line specified in /etc/kernel/cmdline .
If you need different images to use different kernel command line parameters, the
*_options line in the *.preset allows you to pass additional arguments to mkinitcpio , i.e.
the --cmdline argument to point it to a different file containing a different set of kernel
command line parameters.

NOTE: Placing the UKI under /efi/EFI/Linux/ allows systemd-boot to automatically detect
images and list them without having to specifically create boot entries for them.

WARNING: If there are no options specified in either /etc/kernel/cmdline or a drop-in file in
/etc/cmdline.d/*.conf , then mkinitcpio will fallback to reading the command line for the
currently booted system from /proc/cmdline . If you're booted into the Arch installation
environment, this will most likely leave you with an unbootable system. Set at least one
command line option in one of the above locations!

mkinitcpio preset file for the 'linux' package

#ALL_config="/etc/mkinitcpio.conf"

ALL_kver="/boot/vmlinuz-linux"

PRESETS=('default' 'fallback')

#default_config="/etc/mkinitcpio.conf"

#default_image="/boot/initramfs-linux.img"

default_uki="/efi/EFI/Linux/arch-linux.efi"

#default_options="--splash /usr/share/systemd/bootctl/splash-arch.bmp"

#fallback_config="/etc/mkinitcpio.conf"

#fallback_image="/boot/initramfs-linux-fallback.img"

mkinitcpio automatically looks for kernel command line parameters specified in
/etc/cmdline.d/*.conf as drop-in files or /etc/kernel/cmdline as a single file.

First create the directory and open a new file in there:

The parameters to include depend on the kind of initramfs used. You can use any of the persistent
block device naming schemes to pass the device. You also need to specify a mapper name under
which the decrypted root file system should be made available for mounting.

You can obtain the block device identifier for the LUKS container, e.g. its UUID, with blkid (using
/dev/nvme0n1p3 as an example):

At minimum your kernel command line parameters should look like this:

This tells the kernel to unlock the LUKS device at the UUID specified and give it the device mapper
name root . This makes the decrypted contents available under /dev/mapper/root , which is a

fallback_uki="/efi/EFI/Linux/arch-linux-fallback.efi"

fallback_options="-S autodetect --cmdline /etc/kernel/cmdline_fallback"

Kernel Command Line Parameters

WARNING: If there are no options specified in either /etc/kernel/cmdline or a drop-in file in
/etc/cmdline.d/*.conf , then mkinitcpio will fallback to reading the command line for the
currently booted system from /proc/cmdline . If you're booted into the Arch installation
environment, this will most likely leave you with an unbootable system. Set at least one
command line option in one of the above locations!

mkdir /etc/cmdline.d

nano /etc/cmdline.d/root.conf

NOTE: Pressing Ctrl + T inside nano allows you to paste the result of a command at the
current cursor position.

blkid -s UUID -o value /dev/nvme0n1p3

busybox

cryptdevice=UUID=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX:root root=/dev/mapper/root rw

/books/arch-linux/page/initramfs
https://wiki.archlinux.org/title/Persistent_block_device_naming
https://wiki.archlinux.org/title/Persistent_block_device_naming

persistent name and can be used as the root file system by the kernel.

When using a systemd-based initramfs, there are two ways of mounting an encrypted file system:
manual and GPT partition auto-mounting.

The manual way is via the command line parameter rd.luks to specify an encrypted device,
similar to the busybox way.

If you would rather have a config file with all your encrypted block devices, you can create a file
named /etc/crypttab.initramfs to specify your encrypted devices which will become
/etc/crypttab in your initramfs and tell the kernel which devices to unlock during boot (see
crypttab(5) for details on the syntax):

This allows you to omit any rd.luks parameters, which leaves you with a kernel command line that
looks like this:

Alternatively, a systemd-based initramfs allows for device auto-discovery. Instead of specifying the
root file system device directly, you can specify this in your /etc/crypttab.initramfs :

This is a symbolic link to the encrypted root partition as identified by its GPT partition type.
When doing this, the decrypted device will also be auto-discovered and auto-mounted, leaving you
with only the rw kernel command line parameter, indicating the file systems should be mounted
writable.

systemd

rd.luks.name=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX=root root=/dev/mapper/root rw

<name> <device> <passphrase> <options>

root UUID=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

root=/dev/mapper/root rw

<name> <device> <passphrase> <options>

root /dev/gpt-auto-root-luks

ATTENTION: Keep the specialties of your chosen root file system in mind, e.g. when using
btrfs, you will still need to supply the subvolume and any other file system options as a
kernel command line parameter, as auto-discovery and auto-mounting uses default file
system mounting options: rootflags=compress=zstd,subvol=@ .

https://man.archlinux.org/man/crypttab.5.en

To further strengthen security you might want to consider using the kernel's built-in Lockdown
Mode. When engaging lockdown, access to certain features and facilities is blocked, even for the
root user. This helps prevent Secure Boot from being bypassed through a compromised system, for
example by editing EFI variables or replacing the kernel at runtime.

Lockdown Mode knows two modes of operation:

integrity : kernel features that allow userland to modify the running kernel are disabled
(kexec, bpf)
confidentiality : kernel features that allow userland to extract confidential information
from the kernel are also disabled

The recommended mode is integrity , as confidentiality can break certain applications (e.g.
Docker).

To enable Lockdown Mode, set the lockdown=MODE kernel command line parameter with your
preferred mode.

NOTE: By default, dm-crypt does not allow TRIM for SSDs for security reasons (information
leak). To override this behavior:

busybox: append :allow-discards to the device mapper name, i.e.
UUID=XXX...XXX:root:allow-discards

systemd: do one of the following:
add rd.luks.options=discard as an additional kernel command line parameter
specify the discard option in /etc/crypttab.initramfs in the options field

Kernel Lockdown Mode

Enroll keys in firmware
WARNING: Replacing the platform keys with your own can end up bricking your machine,
making it impossible to get into the UEFI/BIOS settings to rectify the situation. This is due to
the fact that some device firmware (OpROMs, e.g. GPU firmware), that gets executed during
boot, may be signed using Microsoft's keys. Run sbctl enroll-keys --microsoft if you're
unsure if this applies to you (enrolling Microsoft's Secure Boot keys alongside your own
custom ones) or include the TPM Event Log with sbctl enroll-keys --tpm-eventlog (if your
machine has a TPM and you don't need or want Microsoft's keys) to prevent bricking your
machine.

https://wiki.sebin-nyshkim.net/books/arch-linux/page/trusted-platform-module

To enroll your keys, simply:

sbctl comes with a hook for mkinitcpio which runs after it has rebuilt an image. Manually
specifying images to sign is therefore entirely optional.

If you plan on using a boot loader, you will also need to add its *.efi executable(s) to the sbctl
database, e.g. systemd-boot :

Upon system upgrades, pacman will call sbctl to sign the files listed in the sbctl database.

systemd comes with a systemd-boot-update.service unit file to automate updating the bootloader
whenever systemd is updated. However, it only updates the bootloader after a reboot, by which
time sbctl has already run the signing process. This would necessitate manual intervention.

Recent versions of bootctl look for a .efi.signed file before a regular .efi file when copying
bootloader files during install and update operations. So to integrate better with the auto-update

ATTENTION: Make sure your firmware's Secure Boot mode is set to setup mode! You can
do this by going into your firmware settings and wiping the factory default keys.
Additionally, keep an eye out for any setting that auto-restores the default keys on system
start.

TIP: If you plan to dual-boot Windows, run sbctl enroll-keys --microsoft to enroll
Microsoft's Secure Boot keys along with your own custom keys.

sbctl enroll-keys

Automated signing of UKIs

Signing the Bootloader
NOTE: This is the manual method. If you also want to automate the bootloader update
process, skip to the section below.

sbctl sign --save /efi/EFI/BOOT/BOOTX64.EFI

sbctl sign --save /efi/EFI/systemd/systemd-bootx64.efi

Automate systemd-boot updates and signing

functionality of systemd-boot-update.service , the bootloader needs to be signed ahead of time.

This will add the source and target file paths to sbctl 's database. The pacman hook included with
sbctl will trigger whenever a file in usr/lib/**/efi/*.efi* changes, which will be the case when
systemd is updated and a new version of the unsigned bootloader is written to disk at
/usr/lib/systemd/boot/efi/systemd-bootx64.efi .

Finally, enable the systemd-boot-update.service unit:

Now when systemd is updated the signed version of the systemd-bootx64.efi booloader will be
copied to the ESP after a reboot, completely automating the bootloader update and signing
process!

sbctl sign --save \

 -o /usr/lib/systemd/boot/efi/systemd-bootx64.efi.signed \

 /usr/lib/systemd/boot/efi/systemd-bootx64.efi

systemctl enable systemd-boot-update

systemd comes with systemd-boot already, so no additional packages need to be installed.

To install systemd-boot to your EFI System Partition and create a boot loader entry named "Linux
Boot Manager" in your firmware:

This will copy /usr/lib/systemd/boot/efi/systemd-bootx64.efi to $ESP/EFI/systemd/systemd-
bootx64.efi and $ESP/EFI/BOOT/BOOTX64.EFI .

systemd-boot has two kinds of configs:

$ESP/loader/loader.conf : Configuration file for the boot loader itself
$ESP/loader/entries/*.conf : Configuration files for individual boot entries

Boot Loader

systemd-boot

Install

ATTENTION: By default, systemd-boot will install itself to either of the well-known ESP
locations, e.g. /efi , /boot , or (discouraged) /boot/efi . If your ESP is mounted somewhere
else pass the localtion with the --esp-path parameter.

bootctl install

NOTE: If a signed version of systemd-bootx64.efi exists as systemd-bootx64.efi.signed in the
same directory, bootctl copies the signed file instead.

NOTE: bootctl may complain about your ESP's mount point and the random seed file as
being "world accessible". This is to let you know your ESP's current file system permissions
are too open. To solve this, change the fmask and dmask mount options for your ESP in
/etc/fstab from 0022 to 0077 . Changes apply on next boot. See also: mount(8) $ Mount
options for fat

Configure

Boot loader config

https://man.archlinux.org/man/mount.8#Mount_options_for_fat
https://man.archlinux.org/man/mount.8#Mount_options_for_fat

Setting Type Description

default string The pre-selected default boot entry.
Can be pre-determined value, file
name or glob pattern

timeout number Time in seconds until the default
entry is automatically booted

console-mode number/string Display resolution mode (0 , 1 , 2 ,
auto , max , keep)

auto-entries boolean Show/hide other boot entries found by
scanning the boot partition

auto-firmware boolean Show/hide "Reboot into firmware"
entry

An example loader configuration could look something like this:

Available parameters in boot entry config files:

Key Value Description

title string The name of the entry in the boot
menu (optional)

version string Human readable version of the entry
(optional)

machine-id string The unique machine ID of the
computer (optional)

NOTE: For a full list of options and their explanation refer to loader.conf(5) § OPTIONS

ATTENTION: Only spaces are accepted as white-space characters for indentation, do not
use tabs!

default arch # pre-selects entry from $ESP/loader/entries/arch.conf

timeout 3 # 3 seconds before the default entry is booted

auto-entries 1 # shows boot entries which were auto-detected

auto-firmware 1 # shows entry "Reboot into firmware"

console-mode max # picks the highest-numbered mode available

Boot entry config

SEE ALSO: The Boot Loader Specification for a comprehensive overview of what systemd-
boot implements.

https://man.archlinux.org/man/loader.conf.5#OPTIONS
https://uapi-group.org/specifications/specs/boot_loader_specification/#boot-loader-entries

Key Value Description

sort-key string Used for sorting entries (optional)

linux path Location of the Linux kernel (relative
to ESP)

initrd path Location of the Linux initrd image
(relative to ESP)

efi path Location of an EFI executable, hidden
on non-EFI systems

options string Kernel command line parameters

devicetree path Binary device tree to use when
executing the kernel (optional)

devicetree-overlay paths List of device tree overlays. If
multiple, separate by space, applied
in order

architecture string Architecture the entry is intended for (
IA32 , x64 , ARM , AA64)

Type 1 entries specify their parameters in *.conf files under §ESP/loader/entries/ .

All paths in these configs are relative to the ESP, e.g. if the ESP is mounted at /boot a boot loader
entry located at $ESP/loader/entries/arch.conf would look like this:

When using a unified kernel image, any image ending with *.efi placed under $ESP/EFI/Linux/
will be automatically picked up by systemd-boot along with the metadata embedded in that image
(e.g. title, version, etc.)

If your UKIs are stored somewhere else, you will need a loader entry *.conf file with an efi key
pointing systemd-boot to the location of the *.efi file on the ESP:

Type 1 (text file based)

NOTE: As of mkinitramfs v38, the CPU microcode is embedded in the initramfs and it is no
longer necessary to specify CPU microcode images on a separate initrd line before the actual
initramfs.

title	Arch Linux

linux	/vmlinuz-linux

initrd	/initramfs-linux.img

options	rd.luks.name=XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX=cryptroot root=/dev/mapper/cryptroot

rw

Type 2 (EFI executable)

https://archlinux.org/news/mkinitcpio-hook-migration-and-early-microcode/

EFISTUB is a method of booting the kernel directly as an EFI executable by the firmware without
the need to use a boot loader. This can be useful in cases where you want to reduce the attack
surface a boot loader can introduce, or you intend to only ever boot one image. However, some
UEFI firmware implementations can be flaky, so this isn't always practical.

To be able to manipulate EFI boot variables install efibootmgr :

To create a new entry efibootmgr needs to know the disk and partition where the kernel image
resides on the ESP.

In this example, the ESP is the first partition of the block device /dev/nvme0n1 . Kernel parameters
are part of the -u option. The partition that holds your root file system needs to be passed as a
persistent block device name.

title	Arch Linux

efi /EFI/Arch/linux.efi

EFISTUB

Install

pacman -S efibootmgr

Configure

ATTENTION: efibootmgr cannot overwrite existing boot entries and will disregard the
creation of a boot entry if one with the same label already exists. If you need to overwrite an
existing entry you will need to delete it first. Call efibootmgr without any arguments to list
all current boot entries:

To delete an entry, note its 4-digit boot entry order and instruct efibootmgr to delete it:

efibootmgr

efibootmgr -Bb XXXX

NOTE: If you use LVM or LUKS, you can supply the device mapper name since that already
is persistent.

https://wiki.archlinux.org/title/Persistent_block_device_naming

You can get the persistent block device identifier of a file system with the blkid command, i.e. to
get the UUID of the root file system:

For ease of scriptability, save the values to environment variables:

Then create the boot entry using efibootmgr :

When using a unified kernel image you can instead just point to the UKI without needing to
specify any kernel parameters via the -u option (as these will be part of the UKI already):

/dev/nvme0n1p1 is the ESP, hence /dev/nvme0n1p2 is the root fs

blkid -s UUID -o value /dev/nvme0n1p2

export ROOT=$(blkid -s UUID -o value /dev/nvme0n1p2)

export CMDL="root=UUID=$ROOT rw add_efi_memmap initrd=\\\initramfs-linux.img"

efibootmgr -c -L "Arch Linux" -d /dev/nvme0n1 -p 1 -l /vmlinuz-linux -u $CMDL -v

Unified kernel image

ATTENTION: If Secure Boot is enabled and the command line parameters are embedded in
the UKI, the embedded command line parameters will always take precedence, even if you
pass additional parameters with the -u option.

efibootmgr -c -L "Arch Linux" -d /dev/nvme0n1 -p 1 -l "EFI\Linux\archlinux-linux.efi" -v

